
Optimal investment with transaction costs

and without semimartingales

Short title: Investment without semimartingales

March 25, 2002

Abstract

We consider a general class of optimization problems in financial mar-
kets with incomplete information and transaction costs. Under a no-
arbitrage condition strictly weaker than the existence of a martingale
measure, and when asset prices are quasi left-continuous processes, we
show the existence of optimal strategies.

Applications include maximization of expected utility, minimization of
coherent risk measures, and hedging of contingent claims.
Key Words: transaction costs – incomplete markets – coherent risk mea-
sures – utility maximization
JEL Classification: G12,G13
Mathematics Subject Classification (2000): 60H30, 62P05, 91B30,
26A45

The author wishes to thank Maurizio Pratelli for several remarks and references,
Walter Schachermayer for an illuminating discussion, and an anonymous referee
for suggesting several improvements. Financial support from the University of
Pisa is gratefully acknowledged.

1



1 Introduction

One of the oldest results in Mathematical Finance, due to Kreps and Yan [Kre81,
Yan80] (but see also Delbaen and Schachermayer [DS94] for a more general
version), states that in a frictionless market where free lunches are not allowed,
all assets must be semimartingales. Since the gain of a trading strategy is
given by its integral with respect to the asset process, this result legitimates the
use of the heavy machinery of stochastic integration, with all its far-reaching
consequences.

In presence of proportional transaction costs, semimartingales are not the
only arbitrage-free assets anymore. At the same time, not all strategies are per-
mitted (or meaningful), as trading volume must remain finite. In other words,
as the class of reasonable integrators enlarges, the set of admissible integrands
shrinks, and it turns out that integration can still be defined consistently. In-
deed, this can be done in an elementary way, path by path. Of course, all the
powerful results on semimartingales and stochastic integration cannot be ap-
plied to this setting, but the General Theory of Processes still provides a lot of
information on these integrals.

We consider a market with one riskless asset (used as numeraire) and d risky
assets. In this market, an economic agent is endowed with some initial capital c,
faces a liability (e.g. a contingent claim to hedge) H at time T , and trades in the
available assets to optimize some objective function ρ (which can be an expected
utility, a risk measure, etc.). For each unit of numeraire (e.g. euro) traded into
or out of the i-th risky asset, the agent is charged a fee of ki

t units. One can
also think of this setting as a model convention under which the reference asset
price Xi

t is chosen so that the bid and ask prices are respectively (1−ki
t)X

i
t and

(1 + ki
t)X

i
t . This optimization problem can be written as:

min
θ∈Ak

c

ρ (V c
T (θ)−H)

where Ak
c is the set of admissible strategies and V c

T is the liquidation value of
the agent portfolio at time T .

The above settings provide a convenient framework for different problems,
such as utility maximization and hedging of contingent claims. In the friction-
less case, the utility maximization problem goes back to Merton [Mer69] and
has been studied by a number of different authors, among which we mention
Karatzas, Lehoczky, Shreve and Xu [KLSX91], the first to solve this problem
in an incomplete market setting, and Kramkov and Schachermayer [KS99] who
provide a necessary and sufficient condition for the existence of solutions in the
semimartingale case.

More work in this area stems from the problem of hedging contingent claims
in incomplete markets, where utility maximization is replaced by risk mini-
mization. For instance, Cvitanić [Cvi00] has studied the shortfall minimization
problem for incomplete frictionless markets, while Cvitanić and Karatzas [CK96]
have considered the problem of hedging in presence of transaction costs.

In the main result of this paper, we show the existence of optimal strate-
gies when asset prices are quasi-left continuous, under a suitable no-arbitrage
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condition. Of course, this condition is strictly weaker than the existence of an
equivalent martingale measure, which would force us to the semimartingale case.

As in [Gua02b], the existence of solutions is obtained with a direct method
technique, finding a convergence where optimizing sequences are relatively com-
pact, and the risk functional is lower semicontinuous. In particular, we exploit
the additional compactness introduced by transaction costs in the set of admis-
sible strategies, which is stable under small perturbations of asset processes, and
hence does not depend on the semimartingale property (as opposed to [Gua02b],
where compactness results for classes of integrable martingales are used).

The quasi-left continuity assumption is required only in the proof of the semi-
continuity of the risk functional. For continuous processes, this easily follows
from duality arguments, which hold path by path regardless of the probabilistic
context of the problem. On the contrary, the extension to the quasi-left con-
tinuous case requires some extra effort, as we show that the functional is lower
semicontinuous almost surely, relying on the representation of jumps for cadlag
processes.

The paper is organized as follows: in Section 2 we describe the model of a
financial market with frictions, and show how integration can be defined con-
sistently. Section 3 contains the compactness theorem for admissible strategies,
which holds under a no-arbitrage condition. In Section 4 we show that the exis-
tence of optimal strategies follows from the semicontinuity of the portfolio value.
We show the case of continuous processes separately, as the proofs are consid-
erably simpler. In Section 5 we discuss how the utility maximization problem
can be embedded in this framework, and show with a counterexample that the
compactness result may not hold for some degenerate but still arbitrage-free
markets.

2 The market model

We consider a standard model for a financial market, with a filtered probability
space (Ω,F , (Ft)0≤t≤T , P ), where the filtration Ft satisfies the usual assump-
tions. In this market there is a riskless asset, used as numeraire, and hence
assumed identically equal to 1.

We have d risky assets, given by an Rd-valued process X = ((Xi
t)d

i=1)t∈[0,T ],
adapted to the filtration Ft. Transaction costs are proportional, and we denote
by k = ((ki

t)
d
i=1)t∈[0,T ] the cost for each unit transacted (hence the cost for a

one-share transaction on the i-th asset at time t is ki
tX

i
t).

For vector-valued processes, we shall use the upper index to denote the com-
ponent, and the usual lower index to denote time. When we consider sequences
of processes, we shall use the upper index to denote the position in the sequence,
using the lower position for both the component and time.

In general, we can expect k to depend both on t and ω, reflecting chang-
ing liquidity conditions at different times and circumstances. Hence, we will
allow k to be an adapted, strictly positive stochastic process, discussing further
assumptions when needed.

In frictionless markets, a self-financed strategy is uniquely defined by the
number of shares θ = ((θi

t)
d
i=1)t∈[0,T ] held in each risky asset at each time.
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Therefore, starting from an initial capital c, the portfolio value at time t is
given by:

c +
∫

(0,t]

θsdXs

with the integral representing the gain up to time t. In presence of transac-
tion costs, in general we have two processes L = ((Li

t)
d
i=1)t∈[0,T ] and M =

((M i
t )

d
i=1)t∈[0,T ] representing respectively the cumulative number of shares pur-

chased and sold up to time t, with the obvious relation θt = Lt −Mt. Hence
the liquidation value of a portfolio at time t can be written as:

V c
t (θ) = c +

∫

(0,t]

θsdXs −
d∑

i=1

(∫

[0,t]

ki
sX

i
sd(Li + M i)s + ki

t|θi
t|Xi

t

)

where the last two terms represent respectively the cost of the trading strategy
and the final cost of liquidation. This expression can be further simplified, under
the additional (financially sound) assumption that purchases and sales should
not overlap, to avoid dissipation of wealth.

To translate this requirement in mathematical terms, we need some nota-
tion. Given a function of bounded variation θ, we denote by Dθ its derivative in
the sense of distributions, by |Dθ| the total variation measure associated to Dθ,
and by |Dθ|t = |Dθ|[0, t]. These definitions trivially extend component-wise to
vector-valued strategies θ = ((θi

t)
d
i=1)t∈[0,T ] as Dθ = ((Dθi

t)
d
i=1)t∈[0,T ], |Dθ| =

((|Dθ|it)d
i=1)t∈[0,T ]. Denote also ‖Dθ‖t =

∑d
i=1 |Dθi|t. The no-dissipation con-

dition above then translates into Lt + Mt = |Dθ|t, and we have that:

V c
t (θ) = c +

∫

(0,t]

θsdXs −
d∑

i=1

(∫

[0,t]

ki
sX

i
sd|Dθi|s + ki

t|θi
t|Xi

t

)
(1)

With an abuse of notation, we identify the vector k with the d× d diagonal
matrix with elements (k1, . . . , kd) so that we can rewrite the above expression
as

V c
t (θ) = c +

∫

(0,t]

θsdXs −
∫

[0,t]

ksXs · d|Dθ|s − ktXt · |θt|

Remark 2.1. In our model, only transactions between risky assets and cash are
permitted, and all transaction costs are charged to the cash account. Hence,
this choice is appropriate whenever these features are present, most notably in
stock markets, but also in bond and commodity markets. By contrast, in foreign
exchange markets all assets can be indifferently exchanged, and in this case the
approach of Kabanov et al. [KL01, KS01, KRS01] should rather be employed.

Now it remains to give a meaning to the gain process
∫
[0,t]

θsdXs, since
we consider asset processes which are not necessarily semimartingales. The
Bichteler-Dellacherie Theorem characterizes semimartingales as the largest class
of integrators for general predictable strategies, therefore we will have to restrict
the class of integrands. In fact, in our setting of a market with frictions, we
already consider only strategies of finite variation, and stochastic integrals for
this class can be defined path by path:
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Definition 2.2. Let θ : R+ 7→ R be a left-continuous function of finite variation,
and X a cadlag function. Then we define the integral of θ with respect to X as
(Dellacherie and Meyer [DM82], 8.1):

∫

(0,t]

θsdXs = θt+Xt − θ0+X0 −
∫

(0,t]

XsdDθs+ (2)

For a general function θ of finite variation, we define:
∫

(0,t]

θsdXs =
∫

(0,t]

θs−dXs +
∑

s≤t
θs− 6=θs

(θs − θs−)∆Xs (3)

where the first term in the right is defined by (2). To denote these integrals we
shall indifferently use the notation

∫
(0,t]

θsdXs or (θ ·X)t.

Remark 2.3. The integral defined above trivially extends path by path to finite
variation processes θ = ((θi

t)
d
i=1)t∈[0,T ] and cadlag processes X = ((Xi

t)
d
i=1)t∈[0,T ].

In addition, when X is a semimartingale, the integral in (2) coincides with the
usual stochastic integral (see Dellacherie and Meyer [DM82], 8.1).

The definition in (3) is given for completeness, since for predictable θ it
provides the financially natural extension of the gain process. However, we
shall soon show that in our setting of quasi-left continuous X we may simply
consider left continuous θ, since the extra term in (3) disappears.

To verify the good definition of (3) one should check that the series in the
right-hand side converges. Indeed, since θ has bounded variation we have that
(recall that X∗

t = sups≤t |Xs|):
∑

s≤t
θs− 6=θs

(θs − θs−)∆Xs ≤ 2X∗
t

∑

s≤t

|θs − θs− | ≤ 2X∗
t |Dθ|t

as needed. Finally, we stick to the usual convention that θ0− = 0, so that (2)
can be written as:

∫

(0,t]

θsdXs = θt+ ·Xt −
∫

[0,t]

Xs · dDθs+

In this paper we consider asset processes X with the following properties:

Assumption 2.4.

i) X is a cadlag process, adapted to the filtration Ft;

ii) Xt > 0 a.s. for all t ∈ [0, T ];

iii) X is quasi-left continuous, that is: Xτ = Xτ− for all predictable stopping
times τ .

The next proposition shows that for these processes we only need to consider
left-continuous strategies.
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Proposition 2.5. Let X be a quasi-left continuous process, and θ a predictable,
finite variation process. Then we have that:

∫

[0,t]

θsdXs =
∫

[0,t]

θs−dXs a.s.

Proof. Since X is a cadlag adapted process, {∆X 6= 0} =
⋃

k[[τk]], where τk is a
sequence of stopping times with disjoint graphs, and each of them is either pre-
dictable or totally inaccessible (see for instance Dellacherie and Meyer [DM78]).
When X is quasi-left continuous, up to a null set we can assume that all τk are
totally inaccessible. It follows that:

∫

[0,t]

θsdXs −
∫

[0,t]

θs−dXs =
∑
τk

(θτk
− θτ−k

) ·∆Xτk

Since θ is a predictable process of finite variation, we can define:

Jt =
∑

s≤t

(θs − θs−)

which is a predictable, cadlag process. Hence it follows (see Dellacherie and
Meyer [DM78], Chapter IV, Theorem 88B) that the set {(t, ω) : θt− θt− 6= 0} =
{∆J 6= 0} =

⋃
k[[σk]] where σk is a sequence of predictable stopping times.

However, this means that θτk
−θτ−k

is indistinguishable from the null process
for all k, and the proof is complete.

In the context of transaction costs, we can easily generalize the definition of
admissible strategy as:

Definition 2.6. A predictable finite variation process θ is called c-admissible if
for all t we have that V c

t (θ) ≥ 0 a.e. .
We denote by Ak

c the class of c-admissible strategies with transaction costs
k.

Accordingly we give a definition of arbitrage strategy:

Definition 2.7. An admissible strategy θ is an arbitrage opportunity if, for
some t, V 0

t (θ) ≥ 0, P (V 0
t (θ) > 0) > 0.

Remark 2.8. Kabanov and Stricker [KS01] distinguish two kinds of arbitrage
in the context of transaction costs. While a strong arbitrage offers the usual
opportunity of a riskless profit, a weak arbitrage merely allows to build a position
in the risky asset, recovering all initial transaction costs. The above definition
corresponds to strong arbitrage, as it is given in terms of the liquidation value
V 0

t .

With transaction costs, the absence of arbitrage generally does not imply
the existence of a (local) martingale measure for X. In addition, since the
semimartingale property is preserved under a change to an equivalent measure,
such condition would force us to the semimartingale case.
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In our setting the natural substitute for a martingale measure would be a
condition equivalent to no-arbitrage in presence of transaction costs, but in con-
tinuous time this still seems an open problem, at least to the author’s knowledge.

However, we can consider the following sufficient condition, which allows for
processes that are not semimartingales:

Definition 2.9. Given an adapted, strictly positive process γ = ((γi
t)

d
i=1)t∈[0,T ],

a process X is γ-arbitrage free if there exists a process X̃ and a probability Q
equivalent to P such that (1− γi

t)Xi
t ≤ X̃i

t ≤ (1 + γi
t)Xi

t almost surely in dtdP
for all i, and X̃ is a local martingale under Q.

We recall the following no-arbitrage criterion (see [Gua02a]):

Proposition 2.10. If X is γ-arbitrage free, and γ ≤ k (i.e. γi
t ≤ ki

t a.s. in
dtdP for all and i) then X is arbitrage-free with transaction costs k.

In fact, our results will depend on the following slightly stronger condition:

Definition 2.11. We say that a market with transaction costs k is compact
arbitrage free (CAF) if it is γ-arbitrage free and:

min
1≤i≤d

essinf
t∈[0,T ]

(ki
t − γi

t) > 0 a.s. (4)

Remark 2.12. Note that the γ-arbitrage free condition is trivially satisfied with
γ = 0 if there exists a martingale measure for X.

In the case of finite Ω the converse of Proposition 2.10 holds true (see Jouini
and Kallal [JK95] and Kabanov and Stricker [KS01]).

Very recently, Schachermayer [Sch01a] (see also Kabanov, Rasonyi and Stricker
[KRS01] for an alternative proof) has shown that in discrete time with a gen-
eral Ω, the analogous of martingale measures with transaction costs are consis-
tent price systems, and their existence is equivalent to the robust no-arbitrage
property, which guarantees compactness properties in L0 very similar to those
established in this paper.

3 Compactness of admissible strategies

In this section we show that transaction costs, coupled with the admissibility and
no-arbitrage conditions, generate a strong compactness property for sequences
of admissible strategies.

Roughly speaking, the idea is that any sequence of strategies should be uni-
formly bounded in trading volume, otherwise the admissibility condition would
be violated. Such an estimate on volume will translate into one for the number
of shares at each instant, and compactness will follow.

Of course, the problem is to understand in which sense such boundedness
holds, and what kind of compactness it implies. One can reason as follows: we
aim at results independent of agents’ preferences and views or, in mathematical
terms, that are invariant under a change to an equivalent probability. As a
result, we cannot rely on integrability properties of asset prices, which depend
on the particular probability chosen by the agent.
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On the contrary, boundedness in probability (or in L0) has the desired prop-
erty. This is easily seen by the following lemma, which must be well-known, but
since we have no reference we report it along with its short proof.

Lemma 3.1. Let X and {Yi}i∈I be strictly positive, finite valued, random vari-
ables. Then {Yi}i∈I is bounded in L0 if and only if {XYi}i∈I is bounded in
L0.

Proof. Suppose that {Yi}i∈I is bounded in L0. We obviously have:

P (XYi > M) = P (XYi > M, X ≤ N) + P (XYi > M, X > N)

≤ P (Yi >
M

N
) + P (X > N)

With a suitable choice of M and N , both these terms are arbitrarily small, as X
is finite valued, and {Yi}i∈I is bounded in L0. The reverse implication follows
from the first one, denoting X ′ = 1

X and Y ′
i = XYi.

We now give the compactness result: note that it generally does not hold
in the frictionless case. In this sense, the existence of solutions to optimization
problems with transaction costs may actually be easier than their frictionless
counterparts, as admissibility becomes a more binding condition.

Proposition 3.2. Let X satisfy Assumption 2.4 and the (CAF ) condition (Def-
inition 2.11). If θn ∈ Ak

c is a sequence of finite variation processes, then there
exists a sequence ηn ∈ conv(θn, θn+1, . . . ) such that ηn converges a.s. in dtdP (ω)
to a finite variation process θ ∈ Ak

c .

We break the proof of Proposition 3.2 into three parts. First we recall the
following Lemma from Delbaen and Schachermayer [DS94]:

Lemma 3.3 ([DS94], Lemma A1.1). Let (fn)n≥1 be a sequence of [0,∞)
valued measurable functions on a probability space (Ω,F , P ). There exists a
sequence gn ∈ conv(fn, fn+1, . . . ) such that (gn)n≥1 converges almost surely to
a [0,∞] valued function g.

If conv(fn, fn+1, . . . ) is bounded in L0, then g is finite almost surely. If there
are α > 0 and δ > 0 such that for all n: P (fn > α) > δ, then P (g > 0) > 0.

The next Lemma can be seen as a compactness result for Fatou convergence
(see Kramkov [Kra96], Lemma 4.2) but here convergence is sought within the
class of predictable processes (see also Kabanov and Last [KL01], Lemma 3.4
for a similar result in the context of transaction costs):

Lemma 3.4. Let θn be a sequence of processes of finite variation, such that the
set conv({‖Dθn‖T }n∈N) is bounded in L0(Ω).

Then there is a sequence ηn ∈ conv(θn, θn+1, . . . ) such that ηn converges a.s.
in dtdP (ω) to a finite variation process θ.

Proof. By the Hahn decomposition, a function of bounded variation is a differ-
ence of two monotone functions. Hence we can write θn

t = Ln
t − Mn

t , where
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Ln and Mn are increasing processes which are essentially unique under the
condition that |Dθn|t = Ln

t + Mn
t .

Given a convex combination (αk)∞k=n, we have that:
∑

k≥n

αkLk
t ≤

∑

k≥n

αk|Dθk|t ≤
∑

k≥n

αk|Dθk|T a.e.

therefore conv(Ln
t , Ln+1

t , . . . ) is bounded in L0. By Lemma 3.3, up to a sequence
of convex combinations we can assume that Ln

t converges almost surely to some
Rd-valued variable Lt.

By a diagonalization argument, up to a sequence of convex combinations we
can assume that, for all t ∈ D = {0, T} ∪ (Q ∩ (0, T )), Ln

t converges almost
surely to a process (Lt)t∈D. Clearly, Lt is an increasing process.

We define L̃t = sups∈Q∩(0,t) Ls. Since L̃ is left-continuous, it is obviously
predictable. We now show that, for each ω, Ln

t → L̃t everywhere but in the
discontinuity points of L̃(ω), which are at most a countable set. In fact, if L(ω)
is continuous in t, for any ε > 0 we can find p, q ∈ D such that p < t < q and
Lp(ω) ≤ Lq(ω) ≤ Lp(ω) + ε. Passing to the limit, we get:

Lp(ω) ≤ lim inf
n→∞

Ln
t (ω) ≤ lim sup

n→∞
Ln

t (ω) ≤ Lp(ω) + ε

Since ε is arbitrary, it follows that Ln
t converges to L̃t.

Repeating the same argument for M , we obtain that, up to a sequence
of convex combinations, Ln and Mn respectively converge a.s. in dtdP (ω) to
increasing processes L̃ and M̃ . As a result, Ln

t −Mn
t converges to θt = L̃t−M̃t,

which is a finite variation process.

Remark 3.5. Note that the proof of Lemma 3.4 provides a stronger result than
the one stated. In fact, is shows that for almost every ω there exists a countable
set N(ω) ⊂ [0, T ] such that θn(ω) → θ(ω) for all t /∈ N(ω).

So far no reference is present to the asset process. The assumptions on X in
Proposition 3.2 will now be needed to link the admissibility of trading strategies
to the boundedness condition in Lemma 3.4.

Proof of Proposition 3.2. For any θ ∈ Ak
c , we have:

− c ≤ (θ ·X)T −
∫

[0,T ]

ksXs · d|Dθ|s − kT XT · |θT | =

= (θ ·X)T −
(∫

[0,T ]

γsXs · d|Dθ|s + γT XT · |θT |
)
−

−
(∫

[0,T ]

(ks − γs)Xs · d|Dθ|s + (kT − γT )XT · |θT |
)

(5)

Now, we claim that:

(θ ·X)T −
(∫

[0,T ]

γsXs · d|Dθ|s + γT XT · |θT |
)
≤ (θ · X̃)T (6)
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where X̃ satisfies the properties in Definition 2.9. In fact, recall that X is
γ-arbitrage free, and denote by εt = X̃t − Xt. By assumption we have that
|εi

t| ≤ γi
tXt and integrating by parts, we obtain:

(θ · X̃)T = (θ · (X + ε))T = (θ ·X)T + θT · εT − θ0+ · ε0 −
∫

(0,T ]

εs · dDθs =

= (θ ·X)T + θT · εT −
∫

[0,T ]

εs · dDθs ≥

≥ (θ ·X)T −
∫

[0,T ]

γsXs · d|Dθ|s − γT XT · |θT |

Which proves the claim. From (5) and (6) it follows that:

−c ≤ (θ · X̃)T − δT (ξT · |Dθ|T + XT · |θT |)
where δt = min1≤i≤d essinfs∈[0,t](ki

s − γi
s) and ξt = infs∈[0,t] Xs. Under the

measure Q, the stochastic integral (θ · X̃)T is a local martingale bounded from
below, thus a supermartingale. Taking expectations, we have:

E [ξT · |Dθ|T + XT · |θT |] ≤ c

δT

This inequality is clearly stable under convex combinations of strategies, and
therefore the closed convex hull of the set {ξT · |Dθ|T : θ ∈ Ak

c} is bounded in
L1(Q) and hence in L0(Q).

Note that ξT > 0 a.e. To see this, denote by τ = inf{t : Xt = 0 or Xt− = 0}.
Since X is γ-arbitrage free, we have that τ = inf{t : X̃t = 0 or X̃t− = 0}. But
then we obtain that τ > T a.s., as X̃ is a strictly positive martingale under Q.

This implies that we can apply Lemma 3.1, and we obtain that the closed
convex hull of {‖Dθ‖T : θ ∈ Ak

c} is bounded in L0(P ).
Now, let θn ∈ Ak

c be a sequence of finite variation processes. From the above
discussion it follows that the assumptions of Lemma 3.4 are satisfied, therefore
we can assume, up to a sequence of convex combinations, that θn converges a.s.
in dtdP (ω) to some finite variation process θ. The admissibility of θ will follow
from Proposition 4.7 (or Proposition 4.4, if X is continuous).

Remark 3.6. The (CAF ) condition in Lemma 3.4 cannot be relaxed to allow for
γi = ki for some i. Indeed, in the last section we show with a counterexample
that in this case, which represents the edge of the no-arbitrage condition, the
above compactness properties may break down. Of course, this does not exclude
the existence of solutions, but requires different arguments from those shown
here.

4 Existence of optimal strategies

We start defining the class of risk functionals used in this paper:

Definition 4.1. A lower semicontinuous convex decreasing functional is a func-
tion ρ : L0 7→ R ∪ {+∞}, with the following properties:
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i) ρ is convex;

ii) if X ≤ Y almost surely, then ρ(X) ≥ ρ(Y );

iii) ρ has the Fatou property. If Xn → X a.e., and Xn ≥ −a a.e. for some
a > 0, then

ρ(X) ≤ lim inf
n→∞

ρ(Xn)

Remark 4.2. Definition 4.1 is a natural modification of the analogous definition
in [Gua02b] to the present setting, where no integrability conditions are present.
In particular, here the Fatou property is only required for sequences uniformly
bounded from below. This means that the above definition includes all σ-
additive coherent risk measures as defined by Delbaen [Del00].

The rest of this section deals with the lower semicontinuity of the above
functionals with respect to a.s. convergence in dtdP (ω). For these functionals,
it will be enough to check that the portfolio value V c

t is upper semicontinuous,
and here we shall need the quasi left-continuity of X.

We begin with a lemma which links the pointwise convergence of θn
t (ω) to

the weak star convergence of the measures Dθn(ω).

Lemma 4.3. If conv({‖Dθn‖T }n∈N) is bounded in L0 and θn
t → θt a.s. in

dtdP (ω), then up to a sequence of convex combinations
Dθn

t ⇀ Dθt for a.e. ω.

Proof. By Lemma 3.3, up to a sequence of convex combinations we can assume
that limn→∞ ‖Dθn‖T = V (ω), with V < ∞ a.e.

We have:
{

lim sup
n→∞

‖Dθn‖T > M

}
=

{
lim inf
n→∞

‖Dθn‖T > M
}

=
⋃

k

⋂

n≥k

{‖Dθn‖T > M}

and hence, since ‖Dθn‖T is bounded in L0:

P

(
lim sup

n→∞
‖Dθn‖T > M

)
=

= P


⋃

k

⋂

n≥k

{‖Dθn‖T > M}

 ≤ sup

n
P (‖Dθn‖T > M) ≤ ε

It follows that lim supn→∞ ‖Dθn‖T < ∞ a.e. and hence supn ‖Dθn‖T < ∞
a.e. Since θn

t → θt a.e., the thesis follows by Lebesgue dominated convergence
theorem.

4.1 The case of continuous processes

Here we consider the case where X is a continuous process. In this setting, the
semicontinuity of V c

t can be shown using only arguments of duality between
continuous functions and Radon measures.

11



Proposition 4.4. If θn ∈ Ak
c , conv({‖Dθn‖T }n∈N) is bounded in L0 and θn

t →
θt a.s. in dtdP (ω), then we have:

V c
T (θ) ≥ lim sup

n→∞
V c

T (θn) for a.e. ω (7)

Proof. By lemma 4.3, we have that Dθn
t ⇀ Dθt, and hence, integrating by

parts:

(θ·X)T = XT ·θT−
∫

[0,T ]

Xt·dDθt = lim
n→∞

(
XT · θn

T −
∫

[0,T ]

Xt · dDθn
t

)
= lim

n→∞
(θn·X)T

and by the semicontinuity of the variation, we have:
∫

[0,T ]

Xt · d|Dθ|t ≤ lim inf
n→∞

∫

[0,T ]

Xt · d|Dθn|t

which completes the proof.

From the upper semicontinuity of V c
T we easily obtain the lower semiconti-

nuity of our functional:

Lemma 4.5. Let ρ be a functional as in Definition 4.1, H a FT -measurable
random variable and c > 0. Denoting by F : θ 7→ ρ(V c

T (θ)−H), we have:

i) F is convex;

ii) F is lower semicontinuous with respect to dtdP (ω)-a.s. convergence.

Proof. Follows by a convexity argument and by Fatou’s Lemma, exactly as in
[Gua02b], Lemma 4.3.

The existence result is then an easy corollary:

Proposition 4.6. Let X be a continuous process satisfying Assumption 2.4 and
the (CAF ) condition. If ρ has the properties in Definition 4.1, then the problem:

min
θ∈Ak

c

ρ (V c
T (θ)−H)

admits a solution.

Proof. Let θn ∈ Ak
c be a minimizing sequence. From Proposition 3.2 we obtain

a sequence ηn ∈ conv(θn, θn+1, . . . ) such that ηn → θ ∈ Ak
c a.s. in dtdP (ω) By

the semicontinuity of ρ (Lemma 4.5), it follows that θ is a minimizer.

4.2 The quasi left-continuous case

We now come to the more general case where X is a quasi left-continuous process
on the whole interval [0, T ]. Note that this assumption implies the continuity
of X at T .

In this setting, arguments of duality between continuous functions and signed
measures cannot be applied directly to show that the portfolio value is lower

12



semicontinuous, as the discontinuities of X may be relevant for the limit measure
Dθ. A simple example is given by a limit strategy which changes immediately
after a jump has occurred.

Nevertheless, if the jumps of X are totally inaccessible, the cases where con-
vergence fails are negligible, as admissible strategies must be predictable. This
is the main idea of the next proof, though somewhat hidden in the inevitable
technical details.

Proposition 4.7. If θn ∈ Ak
c , θn

t → θt a.s. in dtdP (ω) and conv({‖Dθn‖T }n∈N)
is bounded in L0, then up to a subsequence:

V c
T (θ) ≥ lim sup

n→∞
V c

T (θn) for a.e. ω (8)

We break the proof of Proposition 4.7 into two lemmas:

Lemma 4.8. If Dθn ⇀ Dθ a.s., then we have:
∫

[0,T ]

Xs · d|Dθ|s ≤ lim inf
n→∞

∫

[0,T ]

Xs · d|Dθn|s for a.e. ω (9)

In addition, if ‖Dθn‖T → ‖Dθ‖T a.s. (i.e. Dθn converges to Dθ in variation),
then we obtain:

∫

[0,T ]

Xs · d|Dθ|s = lim
n→∞

∫

[0,T ]

Xs · d|Dθn|s for a.e. ω (10)

Proof. By a change of variable, we have:
∫

[0,T ]

Xs · d|Dθ|s =
∫ ∞

0

|Dθ|T (X > x)dx

therefore it is sufficient to check that:

|Dθ|(X > x) ≤ lim inf
n→∞

|Dθn|(X > x) (11)

Of course, the problem here is that the set {X > x} is not necessarily open, as
X may have discontinuities. However, X has only totally inaccessible jumps,
therefore {∆X 6= 0} =

⋃
k[[σk]] a.s., where σk is a sequence of totally inaccessible

stopping times.
We denote by τk = inf{t ≥ σk : Xt ≤ x}, and define recursively:

σ̃1 = σ1 A1 = [[σ1, τ1[[

σ̃k = σk

∣∣
{σk /∈Ak−1} Ak = Ak−1 ∪ [[σk, τk[[

where τ
∣∣
A

= τ1A +∞1Ω\A for any stopping time τ . It is easy to see that the
set {σk /∈ Ak−1} is Fσk

-measurable, and hence σ̃k is a stopping time for all k.
We denote by

Bx = {X > x} \
( ⋃

k∈N
[[σ̃k, τk[[

)

13



and observe that Bx is open a.s., as the process X is continuous outside the
random set A∞ =

⋃
k≥1 Ak. It follows that:

|Dθ|(Bx) ≤ lim inf
n→∞

|Dθn|(Bx) for a.e. ω (12)

so it suffices to show that the same property holds for the stochastic intervals
[[σ̃k, τk[[.

Up to a subsequence, we can assume that |Dθn| ⇀ µ, where µ ≥ |Dθ|. We
define the predictable process:

δt = lim inf
n→∞

|Dθn|(0, t)− µ(0, t)

Since we have that

µ[0, t] ≥ lim sup
n→∞

|Dθn|[0, t] ≥ lim inf
n→∞

|Dθn|(0, t) ≥ µ(0, t)

it follows that 0 ≤ δt ≤ µ{t} and hence δt > 0 for at most countably many t.
As a result (see Dellacherie and Meyer [DM78], Chapter IV, Theorem 88),

{(t, ω) : δt > 0} =
⋃

k[[πk]], where {πk}k∈N is a sequence of predictable stopping
times. It follows that P (πj = σ̃k) = 0 for all j, k, and hence limn→∞ |Dθn|(]]0, σ̃k[[) =
µ(]]0, σ̃k[[) a.s.

We have that:

µ(]]0, τk[[) ≤ lim inf
n→∞

|Dθn|(]]0, τk[[) = lim
n→∞

|Dθn|(]]0, σ̃k[[)+lim inf
n→∞

|Dθn|([[σ̃k, τk[[) =

= µ(]]0, σ̃k[[) + lim inf
n→∞

|Dθn|([[σ̃k, τk[[)

whence:
µ([[σ̃k, τk[[) ≤ lim

n→∞
|Dθn|([[σ̃k, τk[[) (13)

which completes the proof of (9).
The proof of (10) is analogous, noting that convergence in variation implies

equality in (12) and (13).

Lemma 4.9. If θn
t → θt a.s. in dtdP (ω) and conv({‖Dθn‖T }n∈N) is bounded

in L0, then up to a subsequence (θn ·X)T converges in probability to (θ ·X)T .

Proof. We have that:

(θn ·X)T = XT · θn
T −

∫

[0,T ]

Xt · dDθn
t =

= XT · θn
T −

∫

[0,T ]

Xt · d(Dθn)+t −
∫

[0,T ]

Xt · d(Dθn)−t

where (Dθn)+ and (Dθn)− denote respectively the positive and negative parts
in the Hahn decomposition of Dθn. Up to subsequences, we can assume that
|Dθn|T converges a.s. and hence that (Dθn)+ ⇀ ν+ and (Dθn)− ⇀ ν−, where

14



ν+ and ν− are positive vector measures. Applying Lemma 4.8 to the last two
integrals above, we obtain that:

lim
n→∞

(θn ·X)T = XT · θT −
∫

[0,T ]

Xt · dν+
t −

∫

[0,T ]

Xtd · ν−t =

= XT · θT −
∫

[0,T ]

Xt · dDθt = (θ ·X)T

Proof of Proposition 4.7. The thesis follows from Lemmas 4.3, 4.9 and 4.8.

As in the continuous case, the existence of minimizers is easily obtained:

Proposition 4.10. Let X be a quasi left-continuous process satisfying Assump-
tion 2.4 and the (CAF ) condition. If ρ has the properties in Definition 4.1, then
the problem:

min
θ∈Ak

c

ρ (V c
T (θ)−H)

admits a solution.

Proof. As in Proposition 4.6, it follows from Proposition 3.2 and 4.7.

5 Examples and Counterexamples

5.1 Utility maximization

It is natural to embed the utility maximization problem in the framework of
Proposition 4.6 by choosing ρ(X) = E[−U(X)]. However, while conditions i)
and ii) in Definition 4.1 are trivially satisfied for any utility function U , the
Fatou property iii) generally does not hold, unless U is bounded.

However, the existence of an optimal solution requires that only maximizing
sequences satisfy the Fatou property. In fact, in the frictionless case, Kramkov
and Schachermayer [KS99] have shown with convex duality arguments that a
necessary and sufficient condition for existence is that U has reasonable asymp-
totic elasticity, defined as:

Definition 5.1. The asymptotic elasticity of an increasing concave function U
is defined by:

AE+∞(U) = lim sup
x→∞

xU ′(x)
U(x)

and U has reasonable asymptotic elasticity if AE+∞(U) < 1.

Here we show that an alternative proof of this result, due to Schachermayer
[Sch01b], can easily be adapted to the case of transaction costs.

Theorem 5.2. Let X be a quasi left-continuous process satisfying Assumption
2.4 and the (CAF ) condition. Let U : R+ 7→ R be an increasing concave
function, such that AE+∞(U) < 1.
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If maxθ∈Ak
c
E [U (V c

T (θ))] < ∞, then the problem:

max
θ∈Ak

c

E [U (V c
T (θ))] (14)

admits a solution.

We need the following lemma:

Lemma 5.3 (Schachermayer, [Sch01b]). Let (fn)∞n=1 ≥ 0 be random vari-
ables on (Ω,F , P ) converging a.s. to f0. Suppose that limn→∞E [fn] = E [f0]+
α, for some α > 0. Then for all ε > 0 there exist n,m > ε−1 and disjoint sets
An, Am such that the following conditions are satisfied:

i) fn ≥ ε−1 on An and fm ≥ ε−1 on Am

ii) E [fn1An
] > α− ε and E [fm1Am

] > α− ε

iii) E
[
fn1Ω\(An∪Am)

]
> E [f0]− ε and E

[
fm1Ω\(An∪Am)

]
> E [f0]− ε

Proof of Theorem 5.2. Let θk be a maximizing sequence for (14). Since AE+∞(U) <
1, by Lemma 6.3 in [KS99] there exists some β > 1 such that U(x

2 ) > β
2 U(x)

for all x ≥ x0.
Since X satisfies the (CAF ) condition, by Proposition 3.2 we can assume

up to a sequence of convex combinations that θk → θ ∈ Ak
c a.s. in dtdP . By

Proposition 4.7, we have that:

V c
T (θ) ≥ lim sup

k→∞
V c

T (θk) a.s. in P

We need to show that limk→∞E
[
U(V c

T (θk))
] ≤ E [U(V c

T (θ))]. By contradiction,
suppose that, up to a subsequence:

lim
n→∞

E [U(V c
T (θn))]− E [U(V c

T (θ))] = α > 0

Then, by Lemma 5.3 we could find n, m arbitrarily large and An, Am such that:

E

[
U

(
V c

T (θn) + V c
T (θm)

2

)]
= E

[
U

(
V c

T (θn) + V c
T (θm)

2

)
1Ω\(An∪Am)

]
+

+ E

[
U

(
V c

T (θn) + V c
T (θm)

2

)
1An∪Am

]

By the condition AE+∞(U) < 1, for the second term in the right we have:

E

[
U

(
V c

T (θn) + V c
T (θm)

2

)
1An∪Am

]
≥ βE

[
U(V c

T (θn) + V c
T (θm))

2
1An∪Am

]
≥

≥ β

2
(E [U (V c

T (θn)) 1An ] + E [U (V c
T (θm)) 1Am ]) ≥ β(α− ε)
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while for the first term:

E

[
U

(
V c

T (θn) + V c
T (θm)

2

)
1Ω\(An∪Am)

]
≥

≥ 1
2

(
E

[
U(V c

T (θn))1Ω\(An∪Am)

]
+ E

[
U(V c

T (θm))1Ω\(An∪Am)

]) ≥
≥ E [U(V c

T (θ))]− ε

and hence:

E

[
U

(
V c

T (θn) + V c
T (θm)

2

)]
≥ E [U(V c

T (θ))] + α + ((β − 1)α− ε(β + 1))

Since ε can be chosen arbitrarily small, we can assume that the last term in the
right is positive, but this leads to a contradiction, since E [U(V c

T (θ))] + α is the
supremum.

5.2 Shortfall minimization

The problem of shortfall hedging is obtained choosing ρ(X) = E [l(X−)], where
the loss function l : R+ 7→ R+ is increasing and convex.

In this case, all the conditions in Definition 4.1 are satisfied, since X− ≥ 0
for all X and hence the Fatou property iii) always holds. The existence result
then sounds as follows:

Corollary 5.4. Let X be a quasi left-continuous process satisfying Assumption
2.4 and the (CAF ) condition. Then the problem:

max
θ∈Ak

c

E
[
l
(
(V c

T (θ)−H)−
)]

admits a solution.

5.3 The edge of the no-arbitrage condition

As mentioned in section 3, the compactness result of Proposition 3.2 may fail
when γi = ki for some i, despite the market remains free of strong arbitrage
opportunities. This phenomenon is best illustrated by the next counterexample:

Example 5.5. Let Rt be a Brownian Motion started in 1 and reflected between
1

1+ε and 1
1−ε , and consider a market with only one risky asset Xt = R t

T−t
.

Note that 1 − ε ≤ 1
Xt

≤ 1 + ε, and by Proposition 2.10 the asset X is
arbitrage-free for k ≥ ε (since X̃t ≡ 1 is obviously a martingale under Q = P ).

Consider the stopping times {τi}i≥1 and {σi}i≥0 defined as follows:




σ0 = 0
τi+1 = inf{s > σi : Xs = 1

1+ε}
σi = inf{s > τi : Xs = 1

1−ε}
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and the strategy θ defined by:

θt =

{
0 for t ∈ (σk, τk+1]
δ for t ∈ (τk, σk]

Note that by construction σi, τi < ∞ a.e. for all i.
For k = ε, it is easy to see that V c

t (θ) ∈ [c− δ k
1+ε , c + δ k

1−ε ], and hence θ is
admissible for some small δ > 0. Also, |Dθ|σi

= 2δi, hence |Dθ|T = ∞ a.e.
Defining θn = θσn (that is, θ stopped at σn), we obtain that |Dθn|T =

2δn and hence {|Dθn|T }n is not bounded in L0. Also, all sequences of convex
combinations of θn converge to θ a.s., hence there is no hope that one of them
converges to a function of finite variation.

In practice, the asset X in the above example allows a trivial arbitrage
strategy: buy at 1

1+ε , sell at 1
1−ε . However, with transaction costs, this strategy

remains an arbitrage depending on the cost size: for k < ε, it still delivers a
profit, while for k > ε it leads to a net loss (hence θ is not admissible). At the
critical value k = ε, the trading gain is exactly offset by the transaction cost,
and the portfolio value remains bounded though the trading strategy becomes
more and more hectic as t → T .

However, note that in the above example the market is not free of weak ar-
bitrage opportunities, as there exist strategies θ such that V 0

t (θ) ≥ 0 a.s., and
θt 6= 0. In other words, agents cannot expect riskless profits with positive prob-
ability, but may well expect to build a position at no charge, thus circumventing
transaction costs.
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