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1 Introduction

In a perfect market, asset pricing theory takes two very different forms for
conventional stocks and bonds on the one hand, and for derivative securities
on the other. The price of a conventional asset is determined in equilibrium
by its risk/return properties, as wells as by the preferences of market partic-
ipants. This is the classical portfolio theory, due to Markowitz, Sharpe, and
Merton. By contrast, in perfect markets derivative contracts are redundant,
since their payoff can be replicated exactly by a trading strategy in the un-
derlying securities, as shown in the celebrated paper of Black and Scholes.
As a result, derivatives are priced by pure arbitrage arguments.

This distinction ceases to exist when market frictions are taken into
account. In an incomplete market, the risk associated to derivatives can
only be partially hedged, and an optimal strategy involves the minimization
of the residual risk. In other words, hedging a claim becomes equivalent to
optimizing a portfolio including it.

This paper studies the general problem of minimizing the risk of a trad-
ing position at a fixed date, in a market with incomplete information, pro-
portional transaction costs, and constraints on strategies. This framework
encompasses different problems, such as hedging a contingent claim expiring
at time T , or maximizing utility from terminal wealth.

In the last decade, these problems have raised considerable interest, and
have been attacked with different approaches. Stochastic control theory has
been employed by Davis and Norman [8] for the utility maximization prob-
lem under transaction costs and by Davis, Panas, and Zariphopoulou [9]
for the option pricing problem in the Black-Scholes model with transaction
costs. These techniques have the advantage that characterize value functions
as weak solutions of PDE, but are applicable only when the risky assets fol-
low Markov processes. Such limitation is overcome by the convex duality
approach, introduced by Karatzas, Lehoczky and Shreve [19] in a complete
market model, and progressively extended to more general settings. Assum-
ing that risky assets follow Itô processes, Karatzas, Lehoczky, Shreve and
Xu [20] solved the utility maximization problem under incomplete informa-
tion, while the generalization to the semimartingale case is due to Kramkov
and Schachermayer [22] and Schachermayer [24], who determined necessary
and sufficient conditions on utility functions for the existence of an optimal
solution. In this framework, the problem with transaction costs has been
solved in the case of Itô processes by Cvitanic and Karatzas [5], assuming
the existence of a solution to the dual problem, which has been recently
proved by Cvitanic and Wang [7]. In the general semimartingale case, the
problem has been addressed by Deelstra, Pham and Touzi [10], who show
the existence of a solution and relax the regularity assumptions on utility
functions.

Here we take a different approach, which avoids the dual formulation
and deals with the original problem directly. We obtain a minimization
problem of a convex functional over a class of predictable processes with
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finite variation. Borrowing an idea popular in Calculus of Variation, we look
for a convergence which makes minimizing sequences relatively compact,
and the functional lower semicontinuous. This provides the existence of a
minimizer through the classical Weierstrass theorem.

Since we assume that the risky assets are continuous semimartingales,
the scope of this paper goes beyond Itô processes, but does not reach the
full semimartingale case. Also, we define the spaces of admissible strate-
gies in terms of integrability conditions, along the lines of Delbaen and
Schachermayer [14], as opposed to imposing the limited borrowing condi-
tion, generally used in most papers on convex duality (with the exception of
Schachermayer [24]). Rather, we consider this condition among constraints
on strategies.

One of the major benefits of our approach is that market frictions add lit-
tle complexity to the problem, even when transaction costs and constraints
are stochastic. Also, the risk functionals considered here are general enough
to allow both the maximization of expected utility, and the minimization
of coherent risk measures (see Artzner, Delbaen, Eber and Heath [2] for
details). Utility functions will need minimal regularity, and can be defined
on the whole real line. As a byproduct, the shortfall minimization problem
can be easily handled, as it is equivalent to the maximization of a utility
function consisting in the infimum of two lines.

The paper is organized as follows: in section 2 we describe in details our
model for a market with transaction costs, and show that the formulation
given here is substantially equivalent to others in the literature. Section
3 is devoted to the spaces of admissible strategies, where we look for a
convergence providing both sufficiently many compact sets, and reasonable
(semi)continuity properties for the portfolio value. Section 4 contains the
main results on the existence of optimal strategies in markets with incom-
plete information and transaction costs, when X is a continuous martingale.
Section 5 handles the constrained case, while the last section is devoted to
the continuous semimartingale case.

In the appendix we recall a few not-so-popular results in functional anal-
ysis and stochastic integration which are used extensively in the present
paper.

2 The Model

We consider a market with a risky asset X and a riskless asset B. X is a con-
tinuous semimartingale defined on a probability space (Ω,F , P ), adapted
with respect to a given filtration {Ft}t∈[0,T ], which satisfies the usual hy-
potheses, and such that F = FT . Ft represents the information available to
the agent at time t, which includes the observation of the risky asset value
Xt. We assume that B is deterministic, hence without loss of generality we
can set B = 1, since it is the same as replacing X by X

B .
An agent starts with some initial capital c, and faces some contingent

liability H = (HX ,HB) at time T , which requires the payment of HX
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shares of the risky asset, and HB units of the numeraire. Her goal is to set
up a portfolio which minimizes the total risk at time T . The self-financing
condition implies that a trading strategy is uniquely determined by the
number of shares θt invested in the risky asset at time t.

In this market continuous trade is allowed, but proportional transaction
costs are present. Denoting by Lt, Mt respectively the cumulative number
of shares purchased and sold at time t, and assuming that a cost of kt is
incurred for each share traded, the total cost of a strategy is given by:

Ct(θ) =
∫ T

0

kt(dLt + dMt)

where the processes kt, Lt and Mt are adapted to Ft, and kt determines the
cost scheme. For example, costs are proportional to the number of shares if
kt is a constant, or to the amount traded if kt = kXt, for some constant k.
We obviously have:

θt = Lt −Mt

and Lt, Mt are increasing processes, therefore θt is a process of bounded
variation. Viceversa, any function of bounded variation can be represented
as a difference between two increasing functions, given by:

Lt = Dθ+([0, t]) and Mt = Dθ−([0, t])

where Dθ+ and Dθ− are respectively the positive and negative parts of the
Radon measure Dθ. The increasing processes Lt and Mt are uniquely deter-
mined under the assumption that they do not simultaneously increase; see
for instance Ambrosio, Fusco and Pallara (henceforth AFP) [1] for details.
From the financial point of view, this is a natural condition, since it prevents
opposite transactions from taking place at the same time.

With the convention that θt = 0 for t < 0 and θT = limt↑T θt, the
transaction cost up to time t is equal to:

Ct(θ) =
∫

[0,t]

ksd|Dθs|

and the market value of the portfolio at time t is given by the initial capital,
plus the trading gain, minus the transaction cost, namely:

V c
t (θ) = c + Gt(θ)− Ct(θ) where Gt(θ) =

∫ t

0

θsdXs

At the terminal date T , the payment of the liability H and the liquida-
tion of the remaining portfolio will give a payoff equal to:

V c
T (θ)− kT |θT −HX | −XT HX −HB
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which must be evaluated according to the agent preferences. We shall con-
sider risk functionals ρ : Lp 7→ R, where ρ satisfies the following properties:

i) ρ is convex;
ii) if X ≤ Y a.e., then ρ(X) ≥ ρ(Y ) (ρ is decreasing);
iii) ρ has the Fatou property. Namely, if Xn → X a.e., then

ρ(X) ≤ lim inf
n→∞

ρ(Xn)

In particular, this class includes the shortfall, for ρ(X) = E [X−], and a
class of σ-additive coherent risk measures (see Delbaen [11] for details), for
ρ(X) = supP∈P EP [−X], where P is a set of probabilities. Utility maximiza-
tion can also be embedded in this framework, minimizing the functional
ρ(X) = −E [U(X)], where U is the utility function.

Remark 2.1 In our framework, the costs associated to the purchase and sale
of the risky asset are equal. This is not the case in several papers dealing
with proportional transaction costs, where the costs for buying and selling
one share of the risky asset are respectively λXt and µXt (for example,
see Davis, Panas, and Zariphopoulou [9] and Cvitanić and Karatzas [5]).
This feature can be embedded in our model via the alternative definition of
CT (θ):

Cλ,µ
t (θ) =

∫

[0,t]

ktd(λDθ+ + µDθ−)

Since we have that |Dθ| = Dθ+ +Dθ−, for λ = µ the above definition boils
down to (2), up to a rescaling of k. In fact, the quantity λDθ++µDθ− shares
all the relevant properties of |Dθ|, such as weak lower semicontinuity, and
all the discussion that follows on |Dθ| should be easy to adapt to the case
λ 6= µ.

In practice, given two processes for the bid and the ask prices, one can
always obtain a model where λ = µ, choosing Xt as the midpoint between
the bid and the ask, and 2kt equal to the bid-ask spread. Since this conven-
tion greatly simplifies notation, throughout the paper we shall only consider
the case λ = µ.

Remark 2.2 The pointwise definition of variation can be modified into the
following (much less intuitive), which is invariant up to sets of Lebesgue
measure zero:

|Dθ|(ω) = sup
φ∈C1

c (0,T )
‖φ‖∞≤1

∫

[0,T ]

θs(ω)φ′(s)ds

In fact, it can be shown that for each θ there exists a representative such
that the expression above coincides with the (generally higher) pointwise
variation. For details, see AFP [1].
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3 Strategies with Transaction costs

In the literature on markets with incomplete information, the following
spaces of strategies are often considered, especially for p = 2:

Θp = {θ : θ Ft-predictable, GT (θ) ∈ Lp(P )}
Θp can be endowed with the topology induced by the map GT : θ 7→∫ T

0
θtdXt. It is clear that GT (Θp) is a linear subspace of Lp: if X is a

continuous martingale, it turns out that it is also closed, as it follows from
Theorems 6.9 and 6.10, in the cases p > 1 and p = 1 respectively.

The presence of transaction costs in fact forces a much narrower set of
admissible strategies than Θp. As we argued in the previous section, in a
market with proportional costs we should only consider strategies with finite
variation. This leads us to define the following spaces:

Θp
C = {θ ∈ Θp, CT (θ) ∈ Lp(P )}

endowed with the norm:

‖·‖Θp
C

: θ →



∥∥∥∥∥
∫ T

0

θtdXt

∥∥∥∥∥

p

p

+

∥∥∥∥∥
∫

[0,T ]

ktd|Dθ|
∥∥∥∥∥

p

p




1
p

=

=
(
‖GT (θ)‖p

p + ‖CT (θ)‖p
p

) 1
p

We begin our discussion with the following result:

Proposition 3.1 Let X be a continuous local martingale, and k a continu-
ous, adapted process, such that k̃(ω) = mint∈[0,T ] kt(ω) > 0 for a.e. ω. Then
Θp

C is a Banach space for all p ≥ 1.

Proof Θp
C is a linear subspace of Θp, therefore ‖GT (θ)‖p is a norm. Hence

it is sufficient to prove that ‖CT (θ)‖p is also a norm, and that the space is
complete. Trivially, ‖CT (λθ)‖p = |λ| ‖CT (θ)‖p. Let θ, η ∈ Θp

C . We have:

‖CT (θ + η)‖p =

∥∥∥∥∥
∫

[0,T ]

ktd|D(θ + η)|t
∥∥∥∥∥

p

≤

≤
∥∥∥∥∥
∫

[0,T ]

ktd|Dθ|t +
∫

[0,T ]

ktd|Dη|t
∥∥∥∥∥

p

≤ ‖CT (θ)‖p + ‖CT (η)‖p

It remains to show that Θp
C is complete. Let θn be a Cauchy sequence for

Θp
C : since it is also Cauchy in Θp and X is continuous, it follows that Θp is

complete by Theorems 6.9 and 6.10, and we can assume that θn → θ in Θp.
We now show that convergence holds in the ‖CT (θ)‖p norm. Through a

standard Borel-Cantelli argument (see for instance Shiriayev [26], page 257),
we obtain a strategy θ′ and a subsequence nk such that CT (θnk − θ′) → 0
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almost surely. Since θn is a Cauchy sequence in ‖CT (θ)‖p, by the Fatou’s
Lemma we have

E [CT (θm − θ′)p] = E

[
lim inf
k→∞

CT (θm − θnk)p

]
≤

≤ lim inf
k→∞

E [CT (θm − θnk)p] < ε

which provides the desired convergence.
ut

Remark 3.2 Θp
C is not a Hilbert space even for p = 2. In fact, it is easily

checked that the equality |θ+η|2+|θ−η|2 = 2|θ|2+2|η|2, which is valid in any
Hilbert space, is not satisfied from the deterministic strategies θt = 1{t< 1

3 T}
and ηt = 1{t≥ 2

3 T}.

Remark 3.3 Θp
C is generally not separable. To see this, observe that the set

of deterministic strategies {θx}x∈[0,T ], where θx
t = 1{t≥x}, is uncountable,

and ‖θx − θy‖Θp
C
≥ kx(ω) + ky(ω) for all x 6= y and for all p ≥ 1. If k is

uniformly bounded away from zero (for instance, if k is constant), it follows
that ‖θx − θy‖Θp

C
≥ c for some positive c, which proves the claim.

The following inequality states a continuous immersion of Θr
C into Θp,

for r > p, provided that 〈X〉
1
2
T

k̃
is sufficiently integrable.

Proposition 3.4 Let X be a continuous local martingale. For any p, q ≥ 1,
we have:

‖GT (θ)‖p ≤ ‖CT (θ)‖pq

∥∥∥∥∥
〈X〉

1
2
T

k̃

∥∥∥∥∥
pq′

where q′ = q
q−1 .

Proof For any p, we have, by the Burkholder-Davis-Gundy inequality:

E [|GT (θ)|p] ≤ E




(∫ T

0

θ2
t d〈X〉t

) p
2

 ≤ E

[(
sup
t≤T

|θt|
)p

〈X〉
p
2
T

]
≤

≤ E
[
|Dθ|([0, T ])p〈X〉

p
2
T

]
≤ E

[
CT (θ)p

(
〈X〉

1
2
T

k̃(ω)

)p]
≤

≤ E [CT (θ)pq]
1
q E




(√
〈X〉T

k̃(ω)

)pq′



1
q′

and, raising both sides to the power 1
p , the thesis follows.

ut
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Remark 3.5 Proposition 3.4 admits a simple financial interpretation. The
transaction cost needed for a gain with a high moment of order p is bounded
if the asset itself has a sufficiently high moment of the same order (a buy
and hold strategy does the job). Otherwise, the strategy itself must amplify
the swings of the market. In this case, the less the market is volatile, the
higher the moment of the strategy.

Remark 3.6 Denoting the Hp norm of a martingale by ‖M‖Hp = E
[
〈X〉

p
2
T

]
,

it is clear from the proof of Proposition 3.4 that we also have:

‖GT (θ)|Hp ≤ ‖CT (θ)‖pq

∥∥∥∥∥
〈X〉

1
2
T

k̃

∥∥∥∥∥
pq′

This is trivial for p > 1, as the Hp norm is equivalent to the Lp norm. On
the other hand, the space H1 is strictly smaller than L1. In this case, the
last observation states that the gain GT (θ) belongs to H1 and, a fortiori, is
a uniformly integrable martingale.

Remark 3.7 The integrability condition for 〈X〉
1
2
T

k̃
in Proposition 3.4 seems

not too restrictive. For example, if k is a constant, it boils down to an
integrability condition for X. In most models of financial markets, the asset
X has finite moments of any order, therefore is is automatically satisfied.

On the other hand, if kt = kXt, the moments of k̃ can be computed in
terms of Xt, and integrability can be obtained via the Hölder inequality.

Remark 3.3 suggests that the norm topology in Θp
C is too restrictive

to provide sufficient compactness on the space of strategies. The following
lemma provides a more reasonable alternative:

Lemma 3.8 Let X be a continuous local martingale, and GT (θn) → GT (θ)
in the Lp-norm. Then:

i) if p > 1, up to a subsequence θn → θ a.e. in d〈X〉tP (dω);
ii) if p = 1, there exists some ηn, convex combinations of stoppings of θn,

such that ηn → θ a.e. in d〈X〉tP (dω).

Proof i) Let τk be a reducing sequence of stopping times for the local mar-
tingale Xt. For any k, the Burkholder-Davis-Gundy inequality yields:

E [|GT∧τk
(θn)−GT∧τk

(θ)|p] ≥ cpE




∣∣∣∣∣
∫ T∧τk

0

(θn
t − θt)2d〈X〉t

∣∣∣∣∣

p
2

 (1)

for some positive constant cp. Since the left-hand side converges to zero, it
follows that

∫ T∧τk

0
(θn

t − θt)2d〈X〉t also converges to zero in probability, and
θn → θ in the measure d〈X〉t(ω)P (dω). Up to a subsequence, convergence
holds a.e., and since d〈Xτk〉tP (dω) is a sequence of measures increasing to
d〈X〉tP (dω), we conclude that θn → θ a.e. in d〈X〉tP (dω).
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ii) The situation is more delicate here, because (1) is not true in L1.
Denote by τk = inf{t : |Gt(θ)| ≥ k}. The stopped martingales Gt∧τk

(θ)
clearly converge to Gt(θ) almost surely. For each k, Gt∧τk

(θ) ∈ H1 and
we can apply Corollary 6.13, obtaining that for some stopping times Tn,k,
Gt∧Tn,k

(θn) ⇀ Gt∧τk
(θ) in σ(H1, BMO). Up to a sequence of convex combi-

nations ξn,k
t =

∑Mn

j=n βn,k
j Gt∧Tj,k

(θj), we can assume that ξn,k
t → Gt∧τk

(θ)
in the strong topology of H1. Observe also that ξn,k

t = Gt(ηn,k), where
ηn,k

t =
∑Mn

j=n βn,k
j θj

t 1{t<Tj,k}, and that if k′ < k, then (ξn,k)τk′ → Gt∧τk′ (θ).
Hence, by a diagonalization argument, we consider the sequence ηn,n, which
satisfies the condition Gt∧τk

(ηn,n) → Gt∧τk
(θ) in the H1 norm for all k.

In other words:

lim
n→∞

E




(∫ T∧τk

0

(ηn,n
t − θt)2d〈X〉t

) 1
2

 = 0

This means that ηn,n → θ in the measure d〈Xτk〉tP (dω), and up to a
subsequence, a.e. As in i), we conclude that ηn,n → θ a.e. in d〈X〉tP (dω).

ut
The next Proposition provides the lower semicontinuity of the cost pro-

cess, with respect to the convergence in dtP (dω). Intuitively, this means
that taking limits can only reduce transaction costs, because in the limit
strategy some transactions may cancel out, while no new ones can arise. As
we shall see later, this property has interesting consequences on the type of
risk functions and constrained problems that we are able to solve.

Proposition 3.9 If θn is bounded in Θp
C , and θn

t → θt a.e. in dtP (dω)
then:

CT (θ) ≤ lim inf
n→∞

CT (θn) for a.e. ω (2)

and

‖CT (θ)‖p ≤ lim inf
n→∞

‖CT (θn)‖p (3)

for all p ≥ 1.

The proof requires a few lemmas:

Lemma 3.10 For a fixed ω, let θn(ω)t → θ(ω)t for a.e. t, and |Dθ(ω)n|([0, T ]) <
C uniformly in n. Then Dθ(ω)n ⇀ Dθ(ω) in the weak star topology of
Radon measures.

Proof For all φ ∈ C∞c [0, T ], we have:

ν(φ) = lim
n→∞

∫

[0,T ]

φtdDθn
t = − lim

n→∞

∫

[0,T ]

φ′tθ
n
t dt = −

∫

[0,T ]

φ′tθtdt = Dθ(φ)
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It remains to show that the distribution Dθ is in fact a Radon measure, and
this follows from the inequality:

Dθ(φ) ≤ sup
t∈[0,T ]

|φ(t)| lim sup
n→∞

|Dθn|([0, T ]) ≤ C sup
t∈[0,T ]

|φ(t)|

which completes the proof.
ut

The following is a standard result in measure theory (see for instance
AFP [1]):

Lemma 3.11 Let µn ⇀ µ, where µn, µ are Radon measures on I, and
convergence is meant in the weak star sense. Then |µ| ≤ lim infn→∞ |µn|.

Proof of Proposition 3.9 By assumption, for a.e. ω, θn
t (ω) → θt(ω) for a.e.

t. To prove (2), we show that for all subsequences nj for which CT (θnj (ω))
converges, we have:

CT (θ(ω)) ≤ lim
j→∞

CT (θnj (ω)) (4)

If CT (θnj (ω)) →∞, then (4) is trivial. If not, then CT (θnj (ω)) < M(ω) for
all j and hence

|Dθnj (ω)|([0, T ]) <
M(ω)
k̃(ω)

Lemma 3.10 implies that Dθnj (ω) ⇀ Dθ(ω). By Lemma 3.11, we obtain:

CT (θ(ω)) =
∫

[0,T ]

ktd|Dθ(ω)| ≤ lim
j→∞

∫

[0,T ]

ktd|Dθnj (ω)| = lim
j→∞

CT (θnj (ω))

and (2) follows. For (3), notice that:

‖CT (θ(ω))‖p
p = E

[(∫

[0,T ]

ktd|Dθ(ω)|
)p]

≤ E

[
lim inf
n→∞

(∫

[0,T ]

ktd|Dθn(ω)|
)p]

≤

≤ lim inf
n→∞

E

[(∫

[0,T ]

ktd|Dθn(ω)|
)p]

= lim inf
n→∞

‖CT (θn(ω))‖p
p < ∞

where the last inequality follows from the uniform boundedness of θn in Θp
C ,

and the previous one holds by Fatou’s Lemma.
ut
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4 Existence of Optimal Strategies

This section contains the main existence results for optimal hedging strate-
gies in unconstrained incomplete markets with proportional transaction
costs, in the local martingale case.

In general, the existence of a minimum requires two basic ingredients:
relative compactness of minimizing sequences (up to some transformation
which leaves them minimizing), and lower semicontinuity of the functional.

Compactness is obviously much easier in Lp spaces with p > 1, since it
coincides with boundedness, but this kind of information is rare to obtain
in applications. On the other hand, some measures of risk (maximization
of utility and minimization of shortfall) seem to provide natural bounds on
the L1 norms of optimizing portfolios at expiration.

Moreover, in the next section we shall see that if X is a semimartingale,
then a minimization problem can be reduced through a change of measure
to a problem in L1. This shows that the L1 case is both mathematically
more challenging, and the most relevant in applications.

We also need the functional F : θ 7→ ρ(V c
T (θ) − H) to be lower semi-

continuous (shortly l.s.c.). Proposition 3.9 shows that in general V c
T (·) is

upper semicontinuous with respect to a.s. convergence in dtP (dω), but not
necessarily continuous. This means that we need a decreasing ρ to ensure
the semicontinuity of F . Also, we are going to take convex combinations of
minimizing strategies, and we need a convex ρ to leave them minimizing.
This leads to the following

Definition 4.1 We define a convex decreasing risk functional as a function
ρ : Lp 7→ R ∪ {+∞}, satisfying the following properties:

i) ρ is convex;
ii) if X(ω) ≤ Y (ω) for a.e. ω, then ρ(X) ≥ ρ(Y ) (ρ is decreasing);
iii) ρ has the Fatou property. Namely, if Xn → X a.e., then

ρ(X) ≤ lim inf
n→∞

ρ(Xn)

Remark 4.2 In the definition above, the critical point is that we require
the Fatou property for any sequence of random variables representing the
terminal wealth of a trading strategy. On the contrary, in the definition of
σ-additive coherent risk measure (see Delbaen [11]) the same property is
required only for sequences bounded in L∞.

For ρ(X) = E [X−] (i.e. minimizing the shortfall), iii) follows from a
straightforward application of Fatou’s Lemma. On the other hand, this prop-
erty does not hold for coherent risk measures, unless additional restrictions
on trading strategies are made.

As we shall see in the next section, this difficulty disappears in presence
of margin requirements, which force all strategies to be bounded.

We easily see that the above definition provides the desired properties
of semicontinuity and convexity:
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Lemma 4.3 Let ρ be a convex decreasing functional, and c > 0. Denoting
by H(θ) = kT |θT −HX | + XT HX + HB and F : θ 7→ ρ (V c

T (θ)−H(θ)), if
θn → θ a.e. in dtP (dω), we have:

i) F is convex;
ii) F is l.s.c. with respect to a.s. convergence in dtP (dω).

Proof i) Since ρ is convex decreasing, and V c
T −H is concave, it follows that

F = ρ ◦ (V c
T −H) is convex.

ii) By Proposition 3.9, we have:

V c
T (θ) ≥ lim sup

n→∞
V c

T (θn)

Since ρ is decreasing, and H(θ) is continuous by definition:

ρ(V c
T (θ)−H(θ)) ≤ ρ

(
lim sup

n→∞
(V c

T (θn)−H(θn))
)

and finally, by the Fatou property of ρ:

ρ(V c
T (θ)−H(θ)) ≤ lim inf

n→∞
ρ(V c

T (θn)−H(θn))
ut

For convex decreasing functionals we are going to prove an existence
result on bounded sets of Θp

C . Examples include σ-additive coherent risk
measures (see Delbaen [11] for details).

A special class of these functionals consists of those which can be written
as ρ(X) = E [ν(X)], where ν : R 7→ R is a convex decreasing function. In
this case, we show that an optimal strategy exists in the whole space Θ1

C ,
since minimizing sequences are automatically bounded. Both the problems
of shortfall minimization and utility maximization belong to this class.

Throughout this section, we make the following:

Assumption 4.4 The measures d〈X〉t(ω)P (dω) and dtP (dω) are equiva-
lent.

This assumption implies that X cannot have intervals of constancy, and
that its bracket process 〈X〉t cannot exhibit a Cantor-ladder behavior. It is
necessary to draw inference on CT (θn), which depends on convergence with
respect to the measure dtP (dω), from the convergence of GT (θn), which
provides information in the measure d〈X〉tP (dω). In practice, it is satisfied
by all diffusion models, even with Hölder coefficients or volatility jumps.

We start with risk minimization in Θp
C , with p > 1. In this case, we

prove the existence of optimal strategies among those with a moment of
order p not exceeding M . As a result, the minimum will generally depend
on the particular bound considered.

The next lemma provides a class of weakly compact sets:

Lemma 4.5 For C ∈ R+ and p > 1, the set

BC,D = {θ : ‖GT (θ)‖p ≤ C, ‖CT (θ)‖p ≤ D}
is Θp-weakly compact for D ∈ R+ ∪ {+∞}.
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Proof Let θn ∈ BC,D. For p > 1, Θp is a reflexive Banach space
(it is isometric to a closed subspace of Lp, which is reflexive). Hence, the
set

BC = {θ : ‖GT (θ)‖p ≤ C}
is weakly compact in Θp, and up to a subsequence GT (θn) ⇀ GT (θ) ∈ BC .
Since BC,D is convex, by Theorem 6.7 there exists a sequence ηn ∈ BC,D of
convex combinations of θn, such that GT (ηn) → GT (θ) in Lp. By Lemma
3.8, it follows that, up to a subsequence, ηn → θ a.e. in d〈X〉tP (dω), and
by Lemma 3.9, we conclude that θ ∈ BC,D.

ut

Proposition 4.6 Let ρ be a convex decreasing functional, c > 0 and
(HB + XT HX , kT HX) ∈ Lp(Ω,FT , P ), with p > 1. For any M > 0 let
us denote

Θp
C,M = {θ ∈ Θp

C , ‖GT (θ)‖p ≤ M}
Then the following minimum problem admits a solution:

min
θ∈Θp

C,M

ρ (V c
T (θ)−H(θ))

Proof Let θn be a minimizing sequence, so that F (θn) → infθ∈Θp
C,M

F (θ).
Since Θp

C,M is weakly compact by Lemma 4.5, up to a subsequence we can
assume that θn ⇀ θ ∈ Θp

C,M . Then, by Theorem 6.7, there exists a sequence
of convex combinations ηn =

∑∞
k=n αn

kθk, such that ηn → θ in the strong
topology. By Lemma 3.8, we can assume up to a subsequence that ηn → θ
in the d〈X〉tP (dω)-a.s. convergence, and hence dtP (dω)-a.e. by Assumption
4.4.

From the semicontinuity of F (Lemma 4.3), and standard convexity
argument (see for instance Ekeland and Temam [16]), it follows that θ is a
minimizer.

ut
We now turn to risk minimization in Θ1

C . As mentioned before, this
case has the advantage that minimizing sequences are bounded for some
problems considered in applications. On the other hand, a few mathematical
issues arise: a bounded sequence in L1 does not necessarily converge, even
in a weak sense, and the L1 norm of a uniformly integrable martingale is
not equivalent to the H1 norm.

It turns out that the first problem can be overcome through a result of
Komlós [21] (see also Schwartz [25], for a shorter proof). We can circumvent
the latter at the price of using stopping as a further transformation on
minimizing sequences, besides extracting subsequences and taking convex
combinations.

We start with the existence result for general convex decreasing risks:
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Proposition 4.7 Let ρ be a convex decreasing functional, c > 0 and (HB +
XT HX , kT HX) ∈ L1(Ω,FT , P ). For any M > 0 the following minimum
problem admits a solution:

min
θ∈Θ1

C,M

ρ (V c
T (θ)−H(θ))

Proof Let θn be a minimizing sequence. By Komlós’ Theorem (6.8), up to a
subsequence of convex combinations ηn =

∑Mn

k=n αn
kθk we can assume that

GT (ηn) → γ a.e. and in L1, and by Yor’s Theorem 6.10, there exists some
θ ∈ Θ1 such that γ = GT (θ). To see that θ ∈ Θ1

C , first we apply Lemma 3.8,
to obtain a sequence ζn =

∑Mn

j=n βn
j (ηj)Tj,n , such that ζn → θ a.e. Then

Lemma 3.9 implies that CT (θ) ∈ L1(P ), as required.
As in the previous proof, the thesis follows from a standard convexity

argument (see Ekeland and Temam [16]).
ut

In the special case of ρ being the expectation of a convex decreasing
function ν, it turns out that the optimal strategy in Θ1

C coincides with that
in Θ1

C,M , for some value of M . This is shown in the following

Proposition 4.8 Let ν : R 7→ R a strictly convex (at least in one point)
decreasing function, c > 0 and (HB +XT HX , kT HX) ∈ L1(Ω,FT , P ). Then
the problem

min
θ∈Θ1

C

E [ν (V c
T (θ)−H(θ))]

admits a solution.

Proof Let θn be a minimizing sequence, so that F (θn) → infθ∈Θ1
C

F (θ).
Since ν is strictly convex, we have that:

ν(x) ≥ a + bx− − (b− ε)x+ (5)

which implies

E
[
Y +

] ≤ 1
ε

(E [ν(Y )]− a + bE [Y ])

for any integrable random variable Y . Substituting Y = V c
T (θn) − H(θn),

we get:

E
[
(V c

T (θn)−H(θn))+
] ≤ 1

ε
(E [ν(V c

T (θn)−H(θn))]− a + bE [V c
T (θn)−H(θn)])

The first term in the right-hand side is bounded by assumption, since
θn is a minimizing sequence. The second term is also bounded, because
E [V c

T (θn)] = c − E [CT (θn)] ≤ c and H(θn) is integrable. Therefore
E [(V c

T (θn)−H(θn))+] is bounded and the inequality

E
[
V c

T (θn)+
] ≤ E

[
(V c

T (θn)−H(θn))+
]
+ E

[
H(θn)+

]
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implies that E [V c
T (θn)+] is bounded. In a similar fashion, (5) yields:

E
[
Y −] ≤ 1

b
(E [ν(Y )] + (b− ε)E

[
Y +

]− a)

Substituting again Y = V c
T (θn)−H(θn), and using the foregoing result, we

conclude that supn E |V c
T (θn)| < ∞. Also:

E |V c
T (θn)| ≥ E [−V c

T (θn)] = −c + E [CT (θn)]

which implies that supn E [CT (θn)] < ∞, and hence supn E [|GT (θn)|] < ∞.
Now that boundedness is shown, the thesis follows from Proposition 4.7 for
a suitable M .

ut

Example 4.9 (Shortfall risk) In Proposition 4.8, choosing ν(x) = x−, we
obtain the existence of a shortfall minimizing strategy, that is a solution of
the problem

max
θ∈Θ1

C

E
[
(H(θ)− V c

T (θ))+
]

Without transaction costs, but assuming that X is only a semimartingale,
this problem has been solved for European options by Cvitanic and Karatzas
[6] in a complete market, and by Cvitanic [4] in incomplete and constrained
markets. In both cases, they use the duality approach, as opposed to the
Neyman-Pearson lemma approach, employed by Föllmer and Leukert [17]
to solve the same problem in an unconstrained incomplete market.

Choosing ν(x) = (x−)p, with p > 1, one obtains a solution for the
problem studied by Pham [23] in discrete time.

Example 4.10 (Utility maximization) Let U be a concave increasing
function. The utility maximization problem

max
θ∈Θ1

C

E [U (V c
T (θ)−H(θ))]

admits a solution. In fact, apply Proposition 4.8, with ν(x) = −U(x). This
problem has been studied for European options in a Markovian model
by Hodges and Neuberger [18] and developed more rigorously by Davis,
Panas, and Zariphopoulou [9]: in both papers, a stochastic control problem
is considered, and the assumptions on the model lead to a Hamilton-Jacobi-
Bellmann equation which can be solved in a weak sense. In more general
models, the same problem has been studied by Cvitanic and Karatzas [5]
and by Kramkov and Schachermayer [22] with the convex duality approach.

Remark 4.11 The variable H needs not be a function of XT alone: in fact we
only require that it is F-measurable. This means that the existence result
is valid for a general path-dependent option, as long as its exercise is fixed
at time T . This excludes American-type options.
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5 Problems with Constraints

In this section we study the problem of hedging with constraints on the
space of strategies. Essentially, we consider two types of constraints: those
on the position in the risky asset (such as limits on short-selling), and those
on the portfolio value (such as margin requirements).

The existence of a constrained minimum depends on two conditions: the
stability of the restricted set of admissible strategies under the transfor-
mations used on minimizing sequences, and its closedness in the topology
where the risk functional is lower semicontinuous.

In this setting, it becomes evident that the more transformations are
used in the proof of the unconstrained problem, the smaller is the set of
tractable constraints. Since in the case of Lp we only take convex combi-
nations of strategies, it follows that we can obtain an existence result for
constraints of the type θt ∈ At, where At(ω) is a closed convex subset of R.

On the contrary, in the L1 case we also use stopped strategies, hence
At(ω) will have to be a closed convex containing zero. At any rate, it seems
that these conditions are not restrictive for most applications.

Since a convex closed set in R is indeed a (possibly unbounded) interval,
we shall describe a constraint by means of two processes mt and Mt, taking
values in R∪{−∞} and R∪{+∞} respectively, and representing the lower
and upper bounds of the strategy at time t. Of course, both mt and Mt

must be predictable with respect to Ft.
The next proposition establishes the existence of a minimum for a con-

straint of the type θt ∈ At.

Proposition 5.1 Let mt and Mt two predictable processes, such that mt ≤
θt ≤ Mt. Denoting by

Γ p(m,M) = {θt ∈ Θp
C : mt ≤ θ ≤ Mt for dtP (dω)-a.e.}

if Γ p(m,M) is not empty, we have that:

i) if p > 1, then for all K > 0 the minimum problem

min
θ∈Θp

C,K∩Γ p(m,M)
ρ (V c

T (θ)−H(θ))

admits a solution.
ii) if p = 1, and mt ≤ 0 ≤ Mt dtP (dω)-a.e., then for all K > 0 the

minimum problem

min
θ∈Θ1

C,K∩Γ 1(m,M)
ρ (V c

T (θ)−H(θ))

admits a solution.

Proof Reread the proof of Propositions 4.6 and 4.7, observing that convex
combinations of strategies in Γ p(m, M) remain in Γ p(m,M) and that (for
4.7) a strategy in Γ 1(m,M), if stopped, remains in Γ 1(m,M). Finally, if
θn → θ a.e. in dtP (dω), and θn ∈ Γ p(m,M), then θ ∈ Γ p(m,M).
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ut

Example 5.2 (Short-selling) For m ≡ 0 and M ≡ +∞, the constraint
above becomes θt ≥ 0 for all t, which amounts to forbid the short sale of
X. Notice that in this case the constraint is deterministic.

Example 5.3 (Margin requirements) Despite the generality of Propo-
sition 5.1, there are some relevant constraints of financial markets which
look awkward to embed in the framework above. For instance, consider a
solvability condition, which in our notation looks like:

V c
t (θ)− kt|θt| ≥ −l

where l is the maximum credit line available at time t. This constraint is
clearly stable with respect to the operations considered, but it does not fit
well in Proposition 5.1, where the processes m and M should be written
explicitly. Indeed, in this example it can be shown that:

(mt,Mt) =

{
(−∞,+∞) if t < τ

(0, 0) if t ≥ τ

where τ is defined as:

τ = inf{t : V c
t (θ)− kt|θt| = −l}

In other words, the agent is unconstrained until the solvency limit is hit,
then the position must be closed for the rest of the period.

In these cases, where the processes m and M are defined implicitly by
an inequality, it makes more sense to check directly that the constraint is
stable under convex combinations, limits a.e. in dtP (dω) and, in the L1

case, under stopping.

As mentioned in Remark 4.2, the presence of margin requirements allows
to consider a larger class of risk functionals. In fact we have the following:

Theorem 5.4 Let ρ be a sigma-additive coherent risk measure. In other
words, ρ(X) = limk→∞ supP∈P EP [−(X ∧ k)], where P is a set of probabil-
ities, all absolutely continuous with respect to P .

If m and M are defined as in Example 5.3, H is bounded, and P is
weakly relatively compact, the same minimum problems as in Proposition
5.1 admit a solution.

We recall the following Lemma from Delbaen [11]:

Lemma 5.5 Let P be a weakly relatively compact set of absolutely continu-
ous probabilities. If Xn is uniformly bounded in L∞(Ω) and Xn → X a.e.,
then limn→∞ ρ(Xn) = ρ(X).
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Proof of Theorem 5.4 A coherent risk measure has all the properties of
a convex risk functional, except that the Fatou property is satisfied only
by bounded sequences of random variables. As a result, the semicontinuity
Lemma 4.3 generally fails. We now show that, given a minimizing sequence
θn, under the additional assumptions above we can obtain another minimiz-
ing sequence ηn such that F : θ 7→ ρ(V c

T (θ)−H(θ)) is lower semicontinuous
with respect to ηn.

Let θn be a minimizing sequence, and denote by ρ = infn F (θn). As
in the proofs of Propositions 4.6 and 4.7, up to a subsequence of convex
combinations we can assume that V c

T (θn) → V c
T (θ) a.e. for some admissible

strategy θ. Also, by definition of ρ, for each ε there exists some n and kn

such that ρ((V c
T (θn)−H(θn)) ∧ k) < ρ + ε for all k > kn.

By the assumptions on m and M , V c
T (θn) > −l for all n. Define now the

stopping times τk = inf{t : V c
t (θ) ≥ k}. By construction, for the stopped

strategies ηn,k
t = θn

t∧τk
and ηk

t = θt∧τk
, we have that V c

T (ηn,k) < k. Now,
the sequence V c

T (ηn,k) is uniformly bounded in L∞, P is weakly relatively
compact, and limn→∞ V c

T (ηn,k)) = V c
T (ηk)) = V c

T (θ) ∧ k a.e. By the above
lemma we have that

lim
n→∞

ρ(V c
T (ηn,k)−H(ηn,k)) = ρ(V c

T (ηk)−H(ηk)) = ρ(V c
T (θ) ∧ k −H(ηk))

and, since H is bounded,

lim
k→∞

ρ(V c
T (ηk)−H(ηk)) = lim

k→∞
ρ(V c

T (θ) ∧ k −H(ηk)) =

= lim
k→∞

ρ((V c
T (θ)−H(ηk)) ∧ k) = ρ(V c

T (θ)−H(ηk))

Therefore ηk is a minimizing sequence, and F is continuous with respect to
it.

ut

6 The Semimartingale Case

In this section we discuss the problems arising in the more realistic case
where X is a semimartingale, and give a partial extension of the foregoing
results to this setting.

It is well-known that in a frictionless incomplete market the absence of
arbitrage (and thus the well-posedness of a hedging problem) is equivalent to
the existence of an equivalent (local) martingale measure (see Delbaen and
Schachermayer [13] for a general version of this result). This is no longer true
in presence of transaction costs, which may add downside risk to potential
arbitrage opportunities, effectively excluding most of them.

In fact, the existence of a martingale measure is a stronger condition than
the absence of arbitrage, since it implies that, removing frictions, the same
market remains arbitrage-free. Nevertheless, most market models considered
in the literature do admit equivalent martingale measures, and here we shall
make this additional assumption.
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Definition 6.1 We define the following sets of martingale measures:

Me
q(P ) = {Q ∼ P :

dQ

dP
∈ Lq(P ), X is a Q-local martingale}

The second issue deals with the space of admissible strategies: if X is a
semimartingale, the space:

GT (Θp) =

{
θ :

∫ T

0

θtdXt ∈ Lp(P )

}

is generally not closed, unless additional assumptions are made on X. For
p = 2, Delbaen, Monat, Schachermayer, Schweizer and Stricker [12] estab-
lished a necessary and sufficient condition for the closedness of GT (Θp). Un-
fortunately, this condition fails to hold for some stochastic volatility models
(see for instance Biagini, Guasoni and Pratelli [3] for an example), suggest-
ing that the choice of the space GT (Θp) may not be satisfactory.

In this spirit, Delbaen and Schachermayer [14] have proposed a different
space Kp with better closure properties. We briefly summarize a few facts:

Definition 6.2 Let Ks
p be the set of bounded simple integrals with respect

to X (as defined in section 2). Kp denotes the closure of Ks
p in the norm

topology of Lp(P ).

Remark 6.3 If X is a martingale, it is easily seen that Kp = GT (Θp). This
allows to generalize the definition of Θp

C to the semimartingale case.

A short version of the main result of Delbaen and Schachermayer [14]
sounds as follows:

Theorem 6.4 Let 1 ≤ p ≤ ∞, and p′ = p
p−1 . If X is a continuous semi-

martingale locally in Lp(P ) such that Me
p′(P ) 6= ∅, and f ∈ Lp(P ), the

following conditions are equivalent:

i) f ∈ Kp;
ii) There exists a X-integrable predictable process θ such that Gt(θ) is a

uniformly integrable Q-martingale for each Q ∈Me
p′(P ), and Gt(θ) con-

verges to f in the L1(Q) norm (as t converges to T );
iii) EQ [f ] = 0 for each Q ∈Me

p′(P ).

Since Kp replaces GT (Θp) when X is a semimartingale, the definition of
Θp

C can be extended as follows:

Θp
C(P ) = {θ : GT (θ) ∈ Kp, CT (θ) ∈ Lp(P )}

We now see when a minimization problem of the type:

min
θ∈Θp

C(P )
ρ(V c

T (θ)−H(θ))

fits into the framework outlined in the previous sections for the martingale
case. The idea is to find an auxiliary problem under Q, equivalent to the
above problem under P . We have the following:
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Proposition 6.5 Let 1 ≤ p ≤ ∞, X a continuous semimartingale locally
in Lp(P ), and Q ∈Me

p′(P ). Then the problem:

min
θ∈Θp

C,M (P )
ρ(V c

T (θ)−H(θ)) (S)

admits a solution for any M > 0.

Proof Since the set {dQ
dP : Q ∈ Me

p′(P )} is convex and closed in Lp′(P ), it
follows that there exists a countable set of martingale measures {Qi}i, such
that

{
dQi

dP

}
i

is dense in {dQ
dP : Q ∈Me

p′(P )} in the Lp′(P ) norm.

By the Hölder inequality, the identity map Id : Kp(P ) 7→ GT (Θ1(Qi))
is a continuous operator for all i. Note also that if CT (θ) ∈ Lp(P ), then
CT (θ) ∈ L1(Qi).

Let θn be a minimizing sequence for (S). Since the set of simple strategies
is dense both in Kp(P ) and Θ1

C,M ′(Qi), it follows that θn is a minimizing
sequence for the problem:

min
θ∈Θ1

C,M′ (Qi)
ρ(V c

T (θ)−H(θ)) (M)

for a suitable M ′. By Proposition 4.7 we can extract a minimizing sequence
of convex combinations of θn converging to a minimizer θ of (M). Since
minimizing sequences are stable under convex combinations, we can take
further subsequences of convex combinations converging to θ in L1(Qi) for
any finite set of i. By a diagonalization argument, we obtain a ηn such that
ηn → θ in L1(Qi) for all i.

If Q ∈ Me
p′(P ), we can assume up to a subsequence that dQi

dP → dQ
dP in

Lp′(P ). By construction, for all i we have that:

EQi [GT (θ)] = 0

and as i → ∞, we obtain that EQ [GT (θ)] = 0 for any Q ∈ Me
p′(P ).

By Theorem 6.4, it follows that θ ∈ Kp. Also, Lemma 3.9 implies that
CT (θ) ∈ Lp(P ). Therefore θ ∈ Θp

C(P ), and the proof is complete.
ut

Remark 6.6 The diagonalization procedure in Proposition 6.5 is necessary
since the map T : Kp(P ) 7→ GT (Θ1(Q)) is generally not onto (see Delbaen
and Schachermayer [14], Remark 2.2 c) for details).

Appendix

We recall here a few results in functional analysis and stochastic integration
that we use in the main text. Unlike the previous sections, here T denotes
a generic stopping time.

This result dates back to Banach, and is well-known:
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Theorem 6.7 Let xn be a relatively weakly compact sequence in a Ba-
nach space V . Then there exists a sequence of convex combinations yn =∑∞

i=n αn
i xn such that yn converges in the norm topology of V .

Bounded sets are relatively compact in Lp spaces for p > 1. For L1 this
is not the case, since its weak star closure leads to the space of Radon mea-
sures. Nonetheless, relative compactness can be recovered through convex
combinations, as shown by the following:

Theorem 6.8 (Komlós) Let Xn be a sequence of random variables, such
that supn E|Xn| < ∞. Then there exists a subsequence X ′

n and a random
variable X ∈ L1 such that, for each subsequence X ′′

n of X ′
n,

1
n

n∑

i=1

X ′′
n → X a.e.

The next type of results states when a sequence of stochastic integrals
converges to a stochastic integral. Again, the situation is different for p > 1
and p = 1. The first case is a classic result of stochastic integration, and
dates back to Kunita-Watanabe for p = 2:

Theorem 6.9 (Kunita-Watanabe) Let X be a continuous local martin-
gale, θn a sequence of X-integrable predictable stochastic processes such
that each

∫ t

0
θn

s dXs is a Lp-bounded martingale, and such that the sequence∫∞
0

θn
s dXs converges to a random variable G in the norm topology of Lp.

Then there is an FX-predictable stochastic process θ such that
∫ t

0
θsdXs

is an Lp-bounded martingale, and such that
∫ t

0
θsdXs = G.

The case p = 1 is due to Yor [27]:

Theorem 6.10 (Yor) Let X be a continuous local martingale, θn a se-
quence of X-integrable predictable stochastic processes such that each

∫ t

0
θn

s dXs

is a uniformly integrable martingale, and such that the sequence
∫∞
0

θn
s dXs

converges to a random variable G in the norm topology of L1 (or even in
the σ(L1, L∞) topology).

Then there is an FX-predictable stochastic process θ such that
∫ t

0
θsdXs

is a uniformly integrable martingale, and such that
∫ t

0
θsdXs = G.

The main difference between p > 1 and p = 1 is that in the latter case the
norms Lp : M 7→ E [Mp

∞] and Hp : M 7→ 〈M〉
p
2∞ are no longer equivalent.

Yor’s idea is to reduce the L1 case to H1 by stopping arguments.
In fact, Theorem 6.10 is a consequence of a more general result (see Yor

[27], Theorem 2.4 page 277), which gives further information on converging
sequences of uniformly integrable martingales. We report this result with
its proof, and an easy corollary used in this paper.

Note that a different proof of 6.10 can be found in Delbaen and Schacher-
mayer [15], with an excellent exposition of the properties of the space H1.
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Theorem 6.11 (Yor) Let A be a set of uniformly integrable martingales,
and denote

Φ(A) = {Y T : Y ∈ A, Y T ∈ H1}
Let Y be a uniformly integrable martingale, Y n ∈ A and Y n → Y in L1

(or even weakly in σ(L1, L∞)). Then, for all stopping times T such that
Y T ∈ H1, we have that Y T belongs to the closure of Φ(A) in the weak
topology σ(H1, BMO).

Proof We separate the proof into three steps.
Step 1: we first show that if the theorem holds for Y ∈ H1 and

T = ∞, then it holds in general. If Y n ⇀ Y in σ(L1, L∞), then (Y n)T ⇀
Y T , and we can apply the theorem to (Y n)T , Y T (since Y T ∈ H1 by as-
sumption) obtaining that Y T belongs to the closure of Φ({(Y n)T }n), which
is smaller than Φ(A).

Step 2: we further reduce the proof to the case of Y n ∈ H1. For all n,
there exists a sequence of stopping times Sn

k →∞ such that (Y n)Sn
k ∈ H1.

Denoting by Zn = (Y n)Sn
k , by martingale convergence there exists some

k = kn such that ‖Y n
∞ − Zn

∞‖L1 = ‖Y n
∞ − E [Y n

∞| FSn
k

] ‖L1 ≤ 1
n . Therefore,

Zn ∈ H1 for all n, and we have, for all g ∈ L∞:

|E [(Zn
∞ − Y∞)g] | ≤ ‖Zn

∞ − Y n
∞‖L1‖g‖L∞ + |E [(Y n

∞ − Y∞)g] |
therefore Zn

∞ converges weakly in σ(L1, L∞) to Y∞. Also, the set Φ({Zn}n)
is smaller then Φ(A).

Step 3: we now give the proof under the assumptions Y n, Y ∈ H1,
T = ∞. It is sufficient to show, for any finite subset (U1, . . . , Ud) ∈ BMO,
that there exists some stopping time T such that:

|E [
[(Y n)T − Y,U i]∞

] | < ε for all i

We take T = inf{t :
∑d

i=1 |U i| ≥ k}, choosing k such that:

E

[∫

(T,∞]

|d[Y,U i]s|
]

<
ε

2
for all i

which is always possible by the Fefferman inequality, since [Y, U i] has inte-
grable variation, Y ∈ H1, and U i ∈ BMO. Therefore it remains to show
that, for some fixed T , and for all i = 1, . . . , d:

lim
n→∞

E
[
[(Y n)T , U i]∞

]
= lim

n→∞
E

[
[Y n, (U i)T ]∞

]
= E

[
[Y, (U i)T ]∞

]

U i is bounded in [0, T ), but it belongs to BMO, it has bounded jumps,
hence it is also bounded on [0, T ]. As a result, (U i)T is bounded. The local
martingale [Y n, (U i)T ] − Y n(U i)T hence belongs to the class D, and we
have:

E
[
[Y n, (U i)T ]∞

]
= E

[
Y n
∞U i

T

]
and E

[
[Y, (U i)T ]∞

]
= E

[
Y∞U i

T

]

Finally, U i
T ∈ L∞, and the thesis follows from the assumption Y n ⇀ Y in

σ(L1, L∞).
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Remark 6.12 The statement of Theorem 6.11 with A = {Y n}n says that,
for any Y τ ∈ H1, there exists a sequence of indices nk, and a sequence of
stopping times τk such that Y τk

nk
⇀ Y τ in σ(H1, BMO). However, a priori

the sequence nk may not tend to infinity, and the the stopping times τk may
not converge almost surely to τ .

The proof provides more information on these issues. For the first, note
that in fact nk = k. For the latter, let us look more closely to the three
steps.

Step 1 simply shows that τk may be chosen such that τk ≤ τ a.e.
In Step 2, we have Sn

k →∞, and kn must be sufficiently high. Therefore
we can replace it with some higher kn such that the condition P (Sn

kn
<

n) < 1
n is satisfied as well.

Likewise, in Step 3 the stopping time T needs to be sufficiently high,
hence it may be chosen to satisfy the condition P (T < n) < 1

n . By a diago-
nalization argument, we can select a sequence (Y n)Tn such that (Y n)Tn ⇀ Y
in σ(H1, BMO), and Tn →∞ a.e.

The previous Remark provides the following:

Corollary 6.13 If Y n ⇀ Y in σ(L1, L∞), and Y τ ∈ H1 for some stopping
time τ , then there exists a subsequence nk and a sequence of stopping times
τk → τ a.e. such that (Y nk)τk ⇀ Y τ in σ(H1, BMO).
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