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Introduction

The main subject of this dissertation are general optimization problems in

markets with proportional transaction costs, with possibly incomplete in-

formation and constraints on strategies. The framework considered encom-

passes different problems, such as derivatives hedging, utility maximization

from terminal wealth, and problems of consumption and investment.

In the last decade, these problems have raised considerable interest, and

have been attacked with different approaches. Stochastic control theory has

been employed by Davis and Norman [DN90] for the problem of intertempo-

ral utility maximization under transaction costs and by Davis, Panas, and

Zariphopoulou [DPZ93] for options hedging in the Black-Scholes model with

transaction costs. Stochastic control techniques have the advantage of char-

acterizing the value functions of optimization problems as weak solutions of

Hamilton-Jacobi-Bellman PDEs, but they are applicable only with Markov

assets processes.

Such limitation is overcome by the convex duality approach, introduced in

the case of Itô asset processes by Karatzas, Lehoczky and Shreve [KLS87] in

the context of frictionless complete markets. The case with incomplete infor-

mation has been covered by Karatzas, Lehoczky, Shreve and Xu [KLSX91],

while in the semimartingale case Kramkov and Schachermayer [KS99] have

determined necessary and sufficient conditions on utility functions for the

existence of optimal solutions to the problem of utility maximization from

terminal wealth.

Within the convex duality framework, Cvitanic and Karatzas [CK96] first

addressed hedging and optimization problems under transaction costs, in the

case of Itô asset processes. In the semimartingale case, Deelstra, Pham and

Touzi [DPT00] have shown the existence of solutions to problems of utility
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maximization from terminal wealth, relaxing the regularity assumptions on

utility functions. In a continuous semimartingale setting, Kamizono [Kam01]

has recently shown the existence of solutions to a class of intertemporal utility

maximization problems under transaction costs.

Convex duality arguments become especially complex in presence of trans-

action costs. In fact, the first step in the dual formulation consists in an op-

tional decomposition result (see for instance Kramkov [Kra96]), which trans-

lates the admissibility of strategies into expectation conditions under a set

of martingale measures. This result is also sensitive to constraints on strate-

gies, which usually call for a separate nontrivial treatment (as for instance in

Föllmer and Kramkov [FK97]). In addition, the coverage of nondifferentiable

utility functions, which becomes necessary in presence of transaction costs,

requires the use of tools of nonsmooth convex analysis, even for the existence

of solutions.

Here we take a different approach, which avoids the dual formulation

altogether and deals with the original problem directly. This means that

we do not need an optional decomposition result in continuous time under

transaction costs (which is, to our knowledge, still an open area), and that

no particular care will be necessary for utility functions which lack regularity.

One of the main points that we make is that existence problems are in fact

easier when transaction costs are introduced. This is a consequence of the

regularity of admissible strategies, which are forced to a class of finite varia-

tion processes. Under a general no-arbitrage condition, it turns out that this

class enjoys convenient compactness properties, which imply the existence

of solutions for a large class of optimization problems. Once this result is

established, introducing constraints on strategies adds little complexity, as

long as these constraints are convex and closed.

The dissertation is organized as follows: In Chapter 1 we describe in de-

tails the class of market models considered, giving particular emphasis to the

different sets of consistent assumptions. Essentially, a well-posed optimiza-

tion problem requires three basic choices: i) an arbitrage-free asset process,

ii) a set of admissible strategies and iii) an optimization objective. Of course,

the first two choices are strictly connected, since arbitrage opportunities are

a subset of admissible strategies.
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Even in frictionless markets, these choices are not unique. In fact, in

classical Finance Theory it is common to consider the space of strategies

with a finite variance payoff, which are natural in presence of quadratic risk

criteria. On the other hand, the mainstream choice in Mathematical Finance

is to define admissible strategies by means of budget constraints, which do

not depend on agents’ views (represented by the physical probability measure

P ). Since neither of these choices is superior in generality, we consider the

optimization problems associated to both of them.

The optimization objective is generally given by the agent’s preferences,

which can be modeled via utility functions, coherent risk measures, or with

other risk criteria (i.e. expected shortfall). We consider a wide class of convex

decreasing risk functionals which encompasses most of these cases.

Since in presence of transaction costs the equivalence between absence

of arbitrage and the existence of (local) martingale measures is no longer

true, in Chapter 2 we discuss this issue and establish some simple sufficient

conditions, which allow to consider models that may allow arbitrage without

transaction costs. These conditions turn out to be very similar to recent

equivalent no-arbitrage conditions under transaction costs in discrete time.

In Chapter 3 we consider optimization problems defined over sets of

strategies leading to p-integrable payoffs, a generalization of the classical

setup of mean-variance optimization. Assuming that assets are continuous

semimartingales, we show the existence of optimal strategies for convex de-

creasing risk functionals. This result is obtained through a direct method

technique, identifying a convergence which makes minimizing sequences com-

pact, and the risk functional lower semicontinuous. The existence results are

then easily adapted to include convex constraints, such as limits on short-

selling and budget constraints. However, although the class of convex de-

creasing risk functionals features natural economic properties, it does not

include the mean-variance criterion, which is the most relevant application

of strategies with p-integrable payoffs.

In fact, we treat this case separately in Chapter 4. As we shall show, it

turns out that mean-variance optimization in presence of transaction costs

leads to paradoxical consequences, arising from the combination of penalizing

gains with the variance criterion and the ability to dissipate wealth through
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transaction costs. In fact, we show that the mean-variance hedging prob-

lem with transaction costs is equivalent to the minimization of the expected

squared shortfall, which is a convex decreasing risk functional.

In Chapter 5 we take up the modern approach of excluding arbitrage

through budget constraints, thus relaxing all integrability conditions. As the

semimartingale property is not natural in presence of transaction costs, we

also consider more general asset processes, imposing only one of the no-

arbitrage criteria discussed in Chapter 2. For technical reasons, in this

context we consider quasi left-continuous asset processes. This condition

basically amounts to assuming that jumps are totally inaccessible, and is

satisfied by most financial models considered in the literature (e.g. for all

jump-diffusions).

As in Chapter 3, the existence of strategies is obtained through compact-

ness and semicontinuity, but in this case we need to consider a much weaker

convergence, which is invariant up to changes to equivalent measures. Since

the proofs can be simplified for continuous and for semimartingale asset pro-

cesses, we show this two cases separately. We then extend the existence

results to convex constraints, and apply them to the general utility maxi-

mization problem.

Since the results in this chapter rely on a compact no-arbitrage criterion,

which is not a necessarily satisfied by any arbitrage-free model with transac-

tion costs, we show with a counterexample that the compactness result may

not hold under a plain no-arbitrage condition.

Finally, we consider intertemporal optimization problems, where eco-

nomic agents can make both consumption and investment decisions. Since

cumulative consumption can be described by an increasing process, and

strategies with transaction costs are necessarily of finite variation, it turns

out that the same compactness results can be applied directly to this setting.

Hence we obtain the existence of solutions for a class of intertemporal prob-

lems, where the objective functional depends on the cumulative consumption

process, while the trading strategy enters only in the budget constraint.



Chapter 1

The Model

We start describing in details our model of a financial market with frictions.

As usual in Mathematical Finance, we consider a filtered probability space

(Ω,F , (Ft)0≤t≤T , P ), where the filtration Ft satisfies the usual assumptions,

and F = FT .

In this market we have a riskless asset and d risky assets. The riskless as-

set is used as numeraire, hence it is assumed identically equal to 1. The prices

of the risky assets are given by an Rd-valued process X = ((X i
t)

d
i=1)0≤t≤T ,

adapted to the filtration Ft.

All assets are arbitrarily divisible, and trading on the risky assets is sub-

ject to proportional transaction costs, which may vary across assets. We

denote by ki the cost associated to the purchase or sale of a unit of the i-th

asset, so that the transaction cost for one share of the i-th asset at time t is

kiX
i
t . We denote by k the vector (k1, . . . , kd).

In general, we can expect k to depend both on t and ω, reflecting changing

liquidity conditions at different times and circumstances. Hence, we will

allow k to be an adapted, strictly positive stochastic process, and will discuss

further assumptions when needed.

In this market, an agent is endowed with an initial capital c (units of

numeraire), and trades in all assets in order to maximize some objective,

without counting on external income sources, such as wages. We have in

mind two main classes of problems:

i) objectives depending on terminal wealth only, as utility maximization
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from terminal wealth and hedging of contingent claims. In this class,

the agent only needs to make investment decisions, and we obtain an

optimization problem on a class of admissible strategies.

ii) intertemporal objectives, which essentially include all problems of max-

imization of utility from consumption along the time interval [0, T ]. In

this class, the agent needs to make both consumption and investment

decisions.

1.1 The gain and portfolio processes

Since we are going to consider asset processes which are not necessarily semi-

martingales, first we need to extend the definition of gain process to this set-

ting. The Bichteler-Dellacherie Theorem (see for instance [Pro90]) character-

izes semimartingales as the largest class of integrators for general predictable

strategies, therefore we will have to restrict the class of integrands.

In any reasonable market model, it is generally accepted that trading

gains should be finite almost surely. Introducing proportional transaction

costs, it is then natural to assume that trading volume remains finite almost

surely, in order to avoid the possibility of infinitely negative wealth.

In mathematical terms, this amounts to consider only finite variation

strategies, which can be integrated path by path:

Definition 1.1 (Dellacherie and Meyer [DM82], 8.1).

Let θ : R+ 7→ R be a function of locally bounded (e.g. finite) variation, and

X a cadlag function. Then we define the integral of θ− with respect to X as:

(θ ·X)t =

∫

[0,t]

θs−dXs = θt+Xt − θ0+X0 −
∫

(0,t]

XsdDθs+ (1.1)

Given a function of bounded variation θ, we denote by Dθ its deriva-

tive in the sense of distributions, which is a Radon measure, by |Dθ| the

total variation measure associated to Dθ, and by |Dθ|t = |Dθ|[0, t]. These

definitions trivially extend componentwise to vector-valued strategies θt =

(θ1,t, . . . , θd,t) as Dθt = (Dθ1,t, . . . , Dθd,t), |Dθ|t = (|Dθ1|t, . . . , |Dθd|t). De-

note also ‖Dθ‖t =
∑d

i=1 |Dθi|t. Conventionally, we assume that θ0− = 0, so
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that (1.1) can be written as:

(θ ·X)t = θt+Xt −
∫

[0,t]

XsdDθs+

As a result, by the self-financing condition, the liquidation value of the port-

folio at time t is:

V c
t (θ) = c + (θ ·X)t −

d∑
i=1

ki

(∫

[0,t]

X i
sd|Dθi|s + |θi,t|X i

t

)
(1.2)

where the terms in the right-hand side represent respectively the initial cap-

ital, the trading gain, the cost of the trading strategy, and the cost of the

final liquidation of the position. With an abuse of notation, we identify the

vector k with the d×d diagonal matrix with elements (k1, . . . , kd) so that we

can rewrite the above expression as

V c
t (θ) = c + (θ ·X)t −

∫

[0,t]

ksXs · d|Dθ|s − ktXt · |θt| (1.3)

When consumption is present, this formula becomes:

V c
t (θ, C) = c + (θ ·X)t −

∫

[0,t]

ksXs · d|Dθ|s − ktXt · |θt| − Ct (1.4)

where Ct is an adapted, right-continuous process, representing cumulative

consumption in the interval [0, t].

Remark 1.2. The pointwise definition of variation can be modified into the

following (much less intuitive), which is invariant up to sets of Lebesgue

measure zero:

|Dθ|(ω) = sup
φ∈C1

c (0,T )
‖φ‖∞≤1

∫

[0,T ]

θs(ω)φ′(s)ds

In fact, it can be shown that for each θ there exists a representative such

that the expression above coincides with the (generally higher) pointwise

variation.
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1.2 Arbitrage and admissible strategies

At this point, in a frictionless market we should add restrictions on the agent’s

trading strategies, in order to exclude the possibility of arbitrage opportuni-

ties, which make most optimization problems trivial. A natural question is

then if this issue disappears with the introduction of transaction costs. In

other words, we have to check if there is an analogous of doubling strate-

gies (see Harrison and Pliska [HP81]) in presence of proportional transaction

costs.

We define arbitrage as follows:

Definition 1.3. A strategy θ is an arbitrage opportunity if, for some t,

V 0
t (θ) ≥ 0, P (V 0

t (θ) > 0) > 0.

The next example provides a positive answer to the above question:

Example 1.4. Consider a discrete-time binomial model with infinite horizon,

which can obviously be embedded in a piecewise constant continuous-time

model in the interval [0, T ] by the time-change n 7→ T − 1
n
.

We have only one risky asset X, such that X0 = 1. At each step n,

Xn+1 can jump either to Xn(1 + ε) with probability p, or to Xn(1 − ε)

with probability 1 − p. Transaction costs are equal to k times the amount

transacted.

We denote an agent’s position as (C, S), where C is the amount of cash

(units of riskless asset) and S is the amount of stock holdings (as opposed to

the number of shares held). Hence, the liquidation value of (C, S) is given by

C+S−k|S|. From any position (C, S), we want to setup a portfolio such that,

if the market goes up (i.e. Xn+1 = (1 + ε)Xn) then the liquidation value of

our position is a given positive constant G. In other words, we want to move

D units from C to S, so that our position becomes (C −D − k|D|, S + D),

choosing D such that:

C −D − k|D|+ (S + D)(1 + ε)− k|S + D|(1 + ε) = G

When both D and S + D are positive, we obtain:

C − (1 + k)D + (S + D)(1 + ε)(1− k) = G
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and hence:

D =
G− C − S(1 + ε)(1− k)

ε− k(2 + ε)
(1.5)

which is positive, provided that k is small enough, and that G > C + S(1 +

ε)(1 − k). In particular, this the case when C + S(1 + ε)(1 − k) ≤ 0 and

G > 0.

Now we can construct the following arbitrage: starting from the position

(0, 0), we choose D as in (1.5), obtaining a position (C0, S0) with negative

liquidation value (because of the transaction cost). If the market goes up, we

liquidate a profit of G. If not, we get to the position (C1, S1) = (C0, S0(1−ε)),

and we have that:

C1 + S1(1 + ε)(1− k) = C0 + S0(1− ε2)(1− k) < C0 + S0(1− k) < 0

Therefore, we can still apply (1.5) to increase our position in the stock, so

that an upward market move at the next step will still guarantee a profit of

G. Iterating this procedure, we clearly obtain an arbitrage strategy.

The previous example shows that, even in presence of transaction costs,

we need to prevent arbitrage by some constraint. Indeed, this can be achieved

by different means, and we shall consider two of them:

• integrability conditions

• budget constraints

1.2.1 Integrability conditions

Doubling strategies are known since the dawn of Probability Theory (if not

earlier), well before the rise of Mathematical Finance. In fact such strate-

gies were called martingales among gamblers of horse races, and indeed the

wealth process in such a strategy is a martingale, provided that the game

is fair. Moreover, this is the classical example of a non uniformly integrable

martingale, and this is precisely the feature that leads to arbitrage.

This observation hints that arbitrage can be avoided enforcing uniform

integrability. The simplest way to achieve this is to ensure that the wealth

process is bounded in Lp with p > 1, which of course implies uniform inte-

grability by De la Vallée Pussin criterion.
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This approach goes back to Harrison and Kreps [HK79] and Kreps [Kre81]

and it is most natural in the context of mean-variance hedging (see for in-

stance Schweizer [Sch96] and Rheinländer and Schweizer [RS97]), where in-

tegrability is granted by the optimization objective.

A pleasant feature of this setting of attainable claims with p-th moments

(as defined by Delbaen and Schachermayer [DS96]) is the existence of a nat-

ural duality between the set of p-integrable contingent claims and the set of

martingale measures with p′-integrable density, where 1
p

+ 1
p′ = 1.

Definition 1.5. For each q ≥ 1, define the sets of martingale measures:

Me
q(P ) = {Q ∼ P :

dQ

dP
∈ Lq(P ), X is a Q-local martingale}

In order to exploit this feature, in this context we shall make the following

assumptions on the asset process X:

Assumption 1.6. X is a continuous semimartingale which admits at least

a local martingale measure.

In the case of frictionless markets, the natural space of strategies is given by:

Θp = {θ : θ Ft-predictable, (θ ·X)T ∈ Lp(P )}

where p is generally related to the optimization objective (for instance, p = 2

in the case of mean-variance hedging). However, the problem with the space

Θp is that it is generally not closed under the topology induced by the map

GT : θ 7→ (θ ·X)T , unless additional assumptions are made on X. In fact, for

p = 2, Delbaen, Monat, Schachermayer, Schweizer and Stricker [DMS+94]

have established a necessary and sufficient condition.

Unfortunately, this condition fails to hold for some stochastic volatility

models (see for instance Biagini, Guasoni and Pratelli [BGP00] for an exam-

ple), suggesting that the choice of the space Θp may not be satisfactory.

In this spirit, Delbaen and Schachermayer [DS96] have proposed a differ-

ent space Kp with better closure properties:

Definition 1.7. Let Ks
p be the set of bounded simple integrals with respect

to X. Kp denotes the closure of Ks
p in the norm topology of Lp(P ).
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In the case of continuous processes, the properties of the space Kp are

summarized by the following theorem, which is a short version of the main

result in [DS96]:

Theorem 1.8. Let 1 ≤ p ≤ ∞, and p′ = p
p−1

. If X is a continuous semi-

martingale locally in Lp(P ) such that Me
p′(P ) 6= ∅, and f ∈ Lp(P ), the

following conditions are equivalent:

i) f ∈ Kp;

ii) There exists a X-integrable predictable process θ such that Gt(θ) is a

uniformly integrable Q-martingale for each Q ∈ Me
p′(P ), and Gt(θ)

converges to f in the L1(Q) norm (as t converges to T );

iii) EQ [f ] = 0 for each Q ∈Me
p′(P ).

In chapter 3 we take up this approach, and define the space Θp
C of p-

integrable strategies with transaction costs. We then study optimization

problems in this space, and show the existence of solutions.

1.2.2 Budget constraints

The main drawback of integrability conditions is that Lp spaces depend crit-

ically on the choice of the agent measure P , while in most cases trading

strategies depend on the institutional characteristics of the market, rather

than on agents’ views. Besides, it is seldom possible to identify clearly the

measure P and the tail behavior of the asset process X, let alone the space

of p-integrable strategies.

These and other objections have led many authors to consider instead

budget constraints, which only depend on the equivalence class of P (that is,

the class of impossible events), a notion far more easily agreed upon.

As proposed by Harrison and Pliska [HP81], a budget constraint requires

that wealth remains bounded from below at all times.

Hence in our context of transaction costs we have the following definition

of admissibility :

Definition 1.9. A predictable finite variation process θ is called admissible

if, for some c > 0 and for all t we have that V c
t (θ) ≥ 0 a.s. .
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We denote by Ak
c = {θ : V c

t (θ) ≥ 0} the class of admissible strategies with

initial capital c and proportional transaction costs k.

In the frictionless case, it is well-known that a market is arbitrage-free (it

satisfies the (NFLVR) condition, to be precise) if and only if there exists a

probability Q, equivalent to P , such that X is a local martingale under Q.

In presence of transaction costs, the existence of a martingale measure

remains of course a sufficient condition. However, one can imagine consistent

arbitrage-free processes which have no martingale measures, and even ones

that are not semimartingales.

In order to allow for such processes, we make the following assumption

on the asset process X:

Assumption 1.10. X strictly positive, adapted cadlag process.

Of course, such a broad class of processes cannot possibly exclude the

presence of arbitrage opportunities, and some additional condition is re-

quired. We discuss these conditions in chapter 2, where some no-arbitrage

criteria are established.

Some results will also require the quasi left-continuity property, which

amounts to assuming that the timing of jumps is unpredictable:

Definition 1.11. A process X is quasi-left continuous if Xτ = Xτ− for all

predictable stopping times τ .

The next proposition shows that for quasi-left continuous processes we

only need to consider left-continuous strategies.

Proposition 1.12. Let X be a quasi-left continuous process, and θ a pre-

dictable, finite variation process. Then we have that:

∫

[0,t]

θsdXs =

∫

[0,t]

θs−dXs a.s.

Proof. Since X is a cadlag adapted process, {∆X 6= 0} =
⋃

k[[τk]], where

τk is a sequence of stopping times with disjoint graphs, and each of them

is either predictable or totally inaccessible (see for instance Dellacherie and
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Meyer [DM78]). When X is quasi-left continuous, up to a null set we can

assume that all τk are totally inaccessible. It follows that:
∫

[0,t]

θsdXs −
∫

[0,t]

θs−dXs =
∑
τk

∆θτk
∆Xτk

Now, since θ is a predictable process of finite variation, it admits left

and right limits for all t. Hence the jump process ∆θt = θt − θt− is itself

predictable, and we can define:

Vt =
∑
s≤t

∆θs

which is a predictable, cadlag process. Hence it follows (see Dellacherie and

Meyer [DM78], Chapter IV, Theorem 88B) that the jump set {∆θ 6= 0} =

{∆V 6= 0} =
⋃

k[[σk]] where σk is a sequence of predictable stopping times.

However, this means that ∆θτk
is indistinguishable from the null process

for all k, and the proof is complete.

1.3 Preferences

After defining the characteristics of tradable assets and the set of strategies

available to the agent, we now turn to the optimization objective, completing

the description of the problem setup.

As mentioned at the beginning of the chapter, we have in mind problems

of utility maximization and risk minimization at a fixed horizon and in an

intertemporal setting, and we will treat these two cases separately.

1.3.1 Fixed horizon

As mentioned at the beginning of this chapter, many problems in Mathe-

matical Finance require the optimization of an objective which involves the

agent’s position only at a fixed time. For example, in the classical “retire-

ment problem” (see for instance [Mer69]) an economic agent maximizes the

expected utility of his terminal wealth at a fixed time T (the retirement date):

max
θ∈Ak

c

E [U(V c
T (θ))]
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Another typical example is the problem of hedging contingent claims with

a fixed expiration (possibly path-dependent). In this case, the option writer

has a random liability H at time T , and wants to set up a portfolio which

minimizes the risk of his position. For instance, the agent may choose to

minimize the expected shortfall:

min
θ∈Ak

c

E
[
(V c

T (θ)−H)−
]

Both these problems share the dependence on θ only through the liquidation

value of the portfolio V c
T (θ) at a fixed date, and possibly on a further random

variable H. Also, both of them can be seen as minimization problems of the

form:

min
θ∈Ak

c

ρ(V c
T (θ)−H)

where ρ is a functional assigning to each random variable X a real num-

ber ρ(X) representing the risk perceived by the agent with such a terminal

wealth. In order to embed several optimization problems of this kind into a

single framework, we shall deal with risk functionals ρ satisfying some general

assumptions.

For technical reasons, the assumptions on ρ will be slightly different in

the two contexts of integrability conditions and budget constraints.

In the case of integrability conditions we shall consider mappings ρ satis-

fying the following:

Definition 1.13. We denote by a convex decreasing risk functional in Lp a

function ρ : Lp(Ω, P ) 7→ R ∪ {+∞}, satisfying the following properties:

i) ρ is convex;

ii) if X ≤ Y almost surely, then ρ(X) ≥ ρ(Y ) ;

iii) ρ has the Fatou property. Namely, if Xn → X a.s., then

ρ(X) ≤ lim inf
n→∞

ρ(Xn)
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In the case of budget constraints we consider the following:

Definition 1.14. We denote by a convex decreasing functional a function

ρ : L0 7→ R ∪ {+∞}, with the following properties:

i) ρ is convex;

ii) if X ≤ Y almost surely, then ρ(X) ≥ ρ(Y );

iii) If Xn → X a.s., and Xn ≥ −a a.s. for some a > 0, then

ρ(X) ≤ lim inf
n→∞

ρ(Xn)

The choice of the above definitions is motivated by the following economic

justifications:

i) This property reflects the usual condition of risk aversion and can also

be seen as a weak principle of diversification. Essentially, it requires

that an agent has no incentive in taking risks which offer no return.

ii) This assumption expresses a natural property of weak nonsatiation,

since it requires that if a random wealth is almost surely higher than

another, is should not be perceived as riskier.

iii) This is a technical assumption, devised in order to exclude risk func-

tionals ρ with purely finite additive properties. A thorough discussion

on this issue can be found in Delbaen [Del00], in the context of coherent

risk measures.

Remark 1.15. In definition 1.13, the critical point is that we require the Fatou

property for any sequence of random variables representing the terminal

wealth of a trading strategy. On the contrary, in the definition of σ-additive

coherent risk measure (see Delbaen [Del00]) the same property is required

only for sequences bounded in L∞.

For ρ(X) = E [X−] (i.e. minimizing the shortfall), iii) follows from

a straightforward application of Fatou’s Lemma. On the other hand, this

property does not hold for general coherent risk measures, unless additional

restrictions on trading strategies are made.
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This difficulty disappears in presence of budget constraints, which force

all strategies to be bounded. In fact, in definition 1.14 the Fatou property

is only required for sequences uniformly bounded from below. This means

that it includes all σ-additive coherent risk measures as defined by Delbaen

[Del00].

1.3.2 Intertemporal setting

This class of problems encompasses various types of intertemporal utility

maximization from consumption. As opposed to the fixed horizon case, in

this case the agent’s objective is a result of both consumption and investment

decisions, with an obvious tradeoff between the two.

The representation of intertemporal preferences has recently been stud-

ied by Hindy, Huang and Kreps [HHK92] in a deterministic model, and by

Hindy and Huang [HH92] in a stochastic setting. They have proposed a

class of functionals satisfying the natural economic requirements that similar

consumption patterns at nearby dates should be close substitutes, and that

utility should depend on past as well as present consumption.

Following Hindy, Huang and Kreps [HHK92], we define the space of con-

sumption plans:

C = {C : Ct adapted, right-continuous and increasing, and C0− = 0}

where Ct represents the cumulative consumption up to time t. On this space,

we shall consider optimization problems of the type:





max
θ,C

ρ(C)

V c
t (θ, C) ≥ 0 a.s. in dtdP

where V c
T (θ, C) is defined by (1.4).
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On the objective function ρ we shall make the following assumptions,

analogous to those made in the fixed horizon case:

Definition 1.16. We denote by an intertemporal convex decreasing func-

tional a function ρ : C 7→ R ∪ {+∞}, with the following properties:

i) ρ is convex;

ii) if C ≤ D a.s. in dtdP , then ρ(C) ≥ ρ(D);

iii) If Cn → C a.s. in dtdP , then ρ(C) ≤ lim infn→∞ ρ(Cn).

Remark 1.17. The right-continuity assumption in the definition of consump-

tion plans is a mere convention, and could well be replaced by left-continuity.

In fact, the only relevant properties of consumption plans depend on the

positive measure dCt, which would probably be a more natural definition.

Nevertheless, we keep to the standard definition in terms of cumulative con-

sumption since it fits well in our framework, where also the control variable

θ is a finite-variation process.

1.4 Notes

Remark 1.18. The most general setting for problems with transaction costs

is probably the one used in Kabanov et al. [Kab99, KL02, KRS01, KS01].

In those papers, a model of d + 1 currencies (assets) S = (S0, . . . , Sd) is

considered, where exchanges between assets are settled as follows: in order

to transfer a unit of account (which generally does not correspond to any

currency) to asset j, we have to withdraw 1+λij units from some other asset

i. Transaction costs are hence represented by a matrix Λ = {λij}ij with

nonnegative entries and such that λii = 0 for all i.

This model has the following features:

i) there is no distinction between risky and riskless assets;

ii) it allows for exchanges between all pairs of assets;

iii) transaction costs for buying and selling can be different.
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The model described in this chapter can be embedded into this framework

as follows: S0 is assumed identically 1, λ0i = ki, λi0 = ki

1−ki
for all i > 0 and

1+λij > (1+λi0)(1+λ0j) for all i, j > 0. With these assumptions, exchanges

between risky assets are always suboptimal, and transaction costs correspond

to those in our model.

However, it is worthwhile to make the following observations:

i) In our model a trading strategy is represented by a vector-valued pro-

cess θt. On the contrary, allowing for exchanges among all assets re-

quires the use of a matrix-valued process Lij
t , representing the cumula-

tive amounts of transfers from asset i to asset j.

ii) The use of a transfer process Lij
t allows for suboptimal strategies, where

Lij
t and Lji

t may simultaneously increase. In other words, it is allowed

to buy and sell one asset at the same time. The elimination of these

strategies hence requires the introduction of a constraint.

iii) When purchases and sales generate different transaction costs, we have

a buying (ask) price (1+λ)Xt and a selling (bid) price (1−µ)Xt. If we

replace the asset Xt with X̃t = (1 + λ−µ
2

)Xt and consider transaction

costs equal to k = λ+µ
2

, then the bid and ask prices remain the same.

This shows that we can easily reduce to this simpler case, up to a

scaling of the asset prices.

iv) In most real markets (including foreign exchange) all transactions take

place between a reference asset (currency for stock or commodity mar-

kets, and a reference currency, such as dollars, for foreign exchange

transactions). Also, transaction costs may vary across assets with dif-

ferent liquidity, but are generally equal for buying and selling transac-

tions. Hence the relevance of the model considered here for applica-

tions.

Finally, note that our definition of arbitrage strategy (1.3) corresponds to

the definition of strong arbitrage in Kabanov et al. [KS01, KRS01]. As a

result, by an arbitrage-free market we shall mean one which satisfies the NAs

condition in the above papers.
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Remark 1.19. Recently, Schachermayer [Sch01a] has proposed a different

framework for models with transaction costs, introducing a bid-ask matrix

Σ = {σij}0≤i,j≤d which is related to the previous notation as follows:

σij = (1 + λij)
Xj

Xi

Hence, our model is obtained choosing, for all i, j > 0:

σ0i = (1 + ki)X i

σi0 =
1

(1− ki)X i

σij > σi0σ0j

Since the formulation with the bid-ask matrix Σ is equivalent in terms of

generality to that with the transaction costs matrix Λ, but it separates the

role of transaction costs from that of asset dynamics.
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Chapter 2

No Arbitrage

under Market Frictions

The First Fundamental Theorem of Asset Pricing states that an asset process

X is essentially arbitrage-free if and only if there is a measure Q, equivalent

to the physical measure P , such that X is a local martingale under Q.

The one-period version of this theorem goes back to the seminal work

of Arrow and Debreu on elementary securities. In the last two decades,

it has been progressively extended to multiperiod models with finite Ω by

Harrison and Pliska [HP81], in discrete time by Dalang, Morton and Willinger

[DMW90] and in full generality by Delbaen and Schachermayer [DS94, DS98].

With transaction costs, this result is no longer valid. While the existence

of a martingale measure still remains a sufficient condition for the absence of

arbitrage, it implies a total ban on non-semimartingale models, as the semi-

martingale property is preserved under the change to an equivalent measure.

In finite discrete time, Jouini and Kallal [JK95] have shown, in the context

of simple strategies, that the absence of arbitrage in presence of transaction

costs is equivalent to the existence of an auxiliary asset process, lying within

the bid-ask spread, which admits a martingale measure. In the same setting,

this result has been extended to general strategies by Kabanov and Stricker

[KS01] in the case of finite Ω and by Kabanov, Rásonyi and Stricker [KRS01]

for general Ω under the auxiliary assumption of “efficient friction”. In fact,

in presence of transaction costs it turns out that even in discrete time there
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are different notions of no arbitrage. Recently, Schachermayer [Sch01a] has

shown that an equivalent condition for no arbitrage under transaction costs

in finite discrete time is given by the “robust no-arbitrage” assumption.

In continuous time, the problem of characterizing arbitrage free models

with transaction costs in terms of martingale conditions seems still open, but

the literature on the discrete time case hints that simple sufficient conditions

can be established.

In order to do this, we introduce the following:

Definition 2.1. Given an adapted, strictly positive process

γt = (γ1
t , . . . , γ

d
t ), a process X is γ-arbitrage free if there exists a process X̃

and a probability Q equivalent to P such that (1− γi
t)X

i
t ≤ X̃ i

t ≤ (1 + γi
t)X

i
t

almost surely in dtdP for all i, and X̃ is a local martingale under Q.

The main idea of this definition is that, in presence of transaction costs, an

economically small (i.e. within the bid-ask spread) perturbation of the asset

process X should not change the arbitrage properties of the model. Hence,

perturbing a model which is arbitrage-free even without frictions (since it

has a martingale measure), we should obtain a model which is arbitrage-free

with transaction costs.

Of course, the arbitrage properties of a γ-arbitrage free model will depend

on the relationship between γ and the transaction cost process k.

In this chapter we obtain the following no-arbitrage criterion:

Proposition 2.2. If X is γ-arbitrage free, and γt ≤ kt (i.e. γi
t ≤ ki

t a.s. in

dtdP for all i) then X is arbitrage-free with transaction costs k.

This result allows to consider non-semimartingale models within a no-

arbitrage setting. In the next chapters, we shall also see that when γ is

strictly smaller than k (in a sense to be made precise) the space of admissible

strategies inherits some compactness properties similar to the frictionless

case. By contrast, when γ = k the interplay between transaction costs and

arbitrage becomes more subtle, and compactness may be lost.

In this chapter, we shall denote the liquidation value of the portfolio as

V c,X,k
t (θ), to stress its the dependence on k. On the other hand, we will

simply write V c,X
t for k = (0, . . . , 0) (the case of a frictionless market).
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2.1 Arbitrage with model uncertainty

Our investigation begins with an equivalence result, which states that an

arbitrage with proportional transaction costs k is essentially equivalent to an

arbitrage in a market without transaction costs, but with an uncertainty in

the asset price not exceeding kX. Such equivalence will provide additional

support, from a different point of view, to the choice of working with finite

variation strategies.

Suppose now that transaction costs are not present, but that the asset

process Xt is known only up to an error εt not exceeding ktXt in absolute

value. In this case, the portfolio value at time t will be given by:

V c,X+ε
t (θ) = c + (θ · (X + ε))t

and its lower and upper bounds will be, respectively:

−V c,X,k
t (θ) = inf

X̃∈V
V c,X̃

t (θ) and +V c,X,k
t (θ) = sup

X̃∈V
V c,X̃

t (θ)

where V = {X + ε : εt adapted to Ft, |εt| ≤ kXt}.
Accordingly, we can give the definition of admissible strategy:

Definition 2.3. An Ft-predictable, X-integrable process θ = (θ1, . . . , θd) is

an admissible strategy with uncertainty k if there exists some c > 0 such

that −V c,X,k
t (θ) ≥ 0 a.s. .

It is natural to ask whether we can estimate the effect of the uncertainty ε

on the portfolio value, that is the length of the interval [−V c,X,k
t (θ),+ V c,X,k

t (θ)].

The next example shows that in general this is not the case:

Example 2.4. Consider Yt, a reflected Brownian Motion between −δ and δ,

and denote by Xt = eYt . Of course, we have that e−δ ≤ Xt ≤ eδ, so that

X can be made arbitrarily close to 1 with for small values of δ. Choosing

θt = −Xt, we have:

(θ ·X)t = −
∫ t

0

XsdXs =
1

2

(〈X〉t −X2
t + 1

) ≥ 1

2

(
te−2δ − e2δ + 1

)

and as δ → 0 the last term converges to t. On the other hand, for δ = 0

(i.e. X ≡ 1), we obviously have (θ · X)t = 0 for all θ. In other words, an
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arbitrarily small (with probability 1) uncertainty in the asset process X can

lead to a large change in the portfolio value.

The next proposition shows that strategies of a.s. finite variation are the

largest possible class for which the above phenomenon does not occur. The

proof borrows from an idea of P.A. Meyer, often used to show that näıve

stochastic integration is impossible (see for instance Protter [Pro90]). Recall

that X∗
t = sups≤t |Xs|.

Proposition 2.5. Let θ be a predictable process. The following conditions

are equivalent:

i) There exists a positive constant M such that, for any adapted continu-

ous process X,

|(θ ·X)t| ≤ MX∗
t a.s.

ii) θ has finite variation.

In addition, the smallest constant for which i) is satisfied for all X is 2|Dθ|t,
while for X positive it is |Dθ|.

Proof. ii) ⇒ i) Let θk =
∑

i θτi
1(τk

i ,τk
i+1]

be a sequence of simple predictable

processes converging to θ almost surely. We have:

(θk ·X)t =
( ∑

i

θτi
(Xτi+1

−Xτi
)
)

t
= θtXt −

∑
τi≤t

Xτi+1
(θτi+1

− θτi
) =

=
∑
τi≤t

(Xt−Xτi+1
)(θτi+1

−θτi
) ≤ (Xt−X)∗t

∑
τi≤t

|θτi+1
−θτi

| ≤ (Xt−X)∗t |Dθ|t

and passing to the limit as k →∞, we obtain that:

(θ ·X)t ≤ (Xt −X)∗t |Dθ|t ≤ 2X∗
t |Dθ|t

If X is positive, we have that, for all s ≤ t:

−X∗
t ≤ −Xs ≤ Xt −Xs ≤ Xt ≤ X∗

t

and hence (Xt −X)∗t ≤ X∗
t .
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i) ⇒ ii) For a given simple predictable process θk, define the linear oper-

ator Tk : C([0, t]) 7→ R as follows:

Tk(X(ω)) = (θk ·X)t(ω) = θtXt −
∑
τi≤t

Xτi+1
(θτi+1

− θτi
)(ω)

Choosing X̃t = 0 and X̃τi+1
= −sgn(θτi+1

− θτi
), we have that:

‖Tk‖ ≥ Tk(X̃) =
∑
τi≤t

|θτi+1
− θτi

|

and, passing to the limit, supk ‖Tk‖ ≥ |Dθ|t. By assumption, Tk(X(ω)) ≤
MX∗

t (ω) for all k and hence supk Tk(X(ω)) < ∞. By the Banach-Steinhaus

theorem it follows that supk ‖Tk‖ < ∞.

In the context of model uncertainty, we define an arbitrage strategy in

terms of its payoff in the worst case scenario:

Definition 2.6. We say that an admissible strategy θ is an arbitrage oppor-

tunity with uncertainty k if −V c,X,k
t (θ) ≥ 0 a.s. and P (−V c,X,k

t (θ) > 0) > 0.

We now show that Definitions 1.3 and 2.6 are equivalent:

Proposition 2.7. For all admissible strategies θ, we have that:

−V c,X,k
t (θ) = V c,X,k

t (θ)

Proof. For any θ and all |εt| ≤ ktXt we have that:

(θ · (X + ε))t =(θ ·X)t + θtεt − θ0+ε0 −
∫

(0,t]

εsdDθs =

=(θ ·X)t + θtεt −
∫

[0,t]

εsdDθs ≥ V c,X,k
t (θ)

and hence −V c,X,k
t (θ) ≥ V c,X,k

t (θ). In fact, equality can be obtained choosing

εs = dDθs

d|Dθ|s ksXs for s < t and εt = θt

|θt|ktXt.

From the above proposition, we obtain the following:

Corollary 2.8. Let (Ω,F ,Ft, Ω, k) be a market model. The following con-

ditions are equivalent:

i) the market with transaction costs k allows arbitrage.

ii) the market with uncertainty k allows arbitrage.
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2.2 No-arbitrage criteria

under transaction costs

We now turn to sufficient conditions for no arbitrage:

Lemma 2.9. Let X, X̃ be two processes such that:

|Xt − X̃t| ≤ ktXt − k̃tX̃t a.s. (2.1)

Then, for all admissible θ, we have that:

V c,X,k
t (θ) ≤ V c,X̃,k̃

t (θ) a.s.

Proof. We have:

V c,X,k
t (θ) =V c,X̃,k̃

t (θ)+ (2.2)

+(θ · (X − X̃))t −
∫

[0,t]

(ksXs − k̃sX̃s)d|Dθ|s − |θ|t(ktXt − k̃tX̃t)

(2.3)

Denoting by εt = (X − X̃)t and recalling that:

(θ · (X − X̃))t = θtεt −
∫

[0,t]

εsdDθs

by the assumption (2.1) we obtain that (2.3) is nonpositive.

Using the case of k̃ = 0 in the above Lemma and the characterization

of arbitrage-free markets in terms of martingale measures, the following no-

arbitrage criterion follows:

Corollary 2.10. If there exists a process X̃ and a probability P̃ such that:

i) P̃ is equivalent to P and X̃ is a P̃ -local martingale with respect to Ft

(P̃ is a local martingale measure for X̃).

ii) |X i − X̃ i| ≤ ki
tX

i a.s. for all i.

then (X,Ft, k) is arbitrage free.
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Proof. We need to show that if V 0,X,k
t (θ) ≥ 0 almost surely, and θ is admis-

sible, then V 0,X,k
t (θ) is identically 0.

By Lemma 2.9, an arbitrage strategy for X under transaction costs is

an arbitrage strategy for X̃ without transaction costs. But X̃ has the local

martingale measure Q, therefore it is arbitrage free by Fundamental Theorem

of Asset Pricing (see for instance [DS94] Theorem 1.1), and V 0,X,k
t (θ) can only

be 0.

Another application of Lemma 2.9 is given by the following criterion,

which says that, roughly speaking, X is arbitrage-free with transaction costs

k if we can find an arbitrage-free process X̃ with transaction costs k̃ < k

sufficiently close to X.

Proposition 2.11. Let X and X̃ two processes and k, k̃, ε > 0 such that:

|X i − X̃ i| ≤ min(εi, ki − k̃i(1 + εi))X a.s.

If (X̃,Ft, k̃) is arbitrage-free, then also (X,Ft, k) is arbitrage-free.

Proof. We have the inequality:

kX − k̃X̃ = (k − k̃)X − k̃(X − X̃) ≥ (k − k̃(1− ε))X ≥ |X − X̃|

which implies that the assumption of Lemma 2.9 is satisfied. It follows that

an arbitrage strategy in X would be dominated by a strategy in X̃, which is

absurd.

Remark 2.12. Corollary 2.10 provides a no-arbitrage criterion for the process

X̃, provided that we can find a process X̃ which lies within the bid-ask

spread of X, and is a local martingale under the equivalent measure Q and

the filtration Ft.

It seems natural to ask if this condition can be relaxed, requiring X̃ to

be a local martingale only with respect to its natural filtration, but the next

example shows that this is not the case:

Example 2.13. Consider the following discrete-time binomial model:

Ỹ2n = Ỹ2n+1 = cn +
n∑

i=1

ξi



24 No Arbitrage under Market Frictions

where {ξi}i∈N is a sequence of IID random variables, such that P (ξ = 1) =

P (ξ = −1) = 1
2
. Define Y as follows:

Yn =





Ỹn for n even

Ỹn + λ(Ỹn+1 − Ỹn) for n odd

and denote by Xn = eYn and X̃n = eỸn . For a suitable choice of c X̃ is a

martingale under its natural filtration, and therefore it is clearly arbitrage-

free. Also, we always have that |Ỹn − Yn| ≤ λ, therefore for a sufficiently

small value of λ we have that |X̃n −Xn| ≤ kXn, for any k > 0.

On the other hand, for odd n we have that:

∆Yn = λ(Ỹn+1 − Ỹn) = λ∆Yn+1

And therefore at any such step the next increment of Y (and hence X)

is known. This allows an obvious arbitrage, given by the strategy ξn =

1{n odd, ∆Yn>0}. In fact, for a small value of λ transaction costs become neg-

ligible with respect to the gain at the next step.

2.3 Notes

Remark 2.14. Kabanov, Rásonyi and Stricker [KRS01] do not formulate their

equivalent condition for no-arbitrage in terms of the existence of an auxiliary

asset X̃, but in terms of dual processes with values in the dual of the solvency

cone K∗. However, as observed in Kabanov and Stricker [KS01] translating

their condition to the setting of bid-ask spreads, it boils down to Definition

2.3.

Remark 2.15. Since in presence of transaction costs there are various kinds

of arbitrage, and correspondingly various no-arbitrage properties, it is worth-

while to investigate under which conditions on γ and k these conditions are

satisfied.
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In fact, it can be checked that:

Proposition 2.16. Let X = {Xi}0≤i≤n be adapted, strictly positive discrete

time process. If X is γ-arbitrage free, we have that:

i) if γi
n ≤ ki

n a.s. for all i, n, then X satisfies the NAs condition in

[KRS01];

ii) if γi
n < ki

n a.s. for all i, n, then X satisfies the NA condition in

[KRS01];

iii) if min
1≤i≤d

essinf
0≤n≤T

(ki
n − γi

n) > 0 a.s., then X satisfies the “robust no-

arbitrage” condition in [Sch01a].

In chapter 5 we will use condition iii) above in order to study optimization

problems with budget constraints, as it implies for the set of admissible

strategies Ak
c compactness properties analogous to those in the frictionless

case. We will also show with a counterexample that these properties may be

lost under the weaker condition i).
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Chapter 3

Semimartingale Problems with

Integrability Conditions

In this chapter we consider optimization problems on a fixed horizon, defining

the spaces of admissible strategies in terms of integrability conditions on the

gain process.

As mentioned in chapter 1, this is the most natural approach when the ob-

jective function itself implies integrability, such in the case of mean-variance

hedging. However, here we shall consider only convex and decreasing risk

functionals, which obviously exclude that approach. This choice is motivated

by consistency considerations, discussed in chapter 4, which show that the

mean-variance criterion leads to systematic dissipation of wealth in presence

of transaction costs.

Here we consider the slightly more general case of an agent facing some

contingent liability H = (HX , HB) at time T , which requires the payment of

HX shares of the risky asset, and HB units of the numeraire. Essentially, this

amounts to considering contingent claims settled both in cash and stock.

We separate the market value (as opposed to the liquidation value) of a

portfolio in the initial capital, the the trading gain, and the transaction cost,

namely:

V c
t (θ) = c + Gt(θ)− Ct(θ)

At the terminal date T , the payment of the liability H and the liquidation
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of the remaining portfolio will give a payoff equal to:

V c
T (θ)− kT XT |θT −HX | −XT HX −HB

which must be evaluated according to the agent preferences.

3.1 Spaces of Strategies

In the literature on markets with incomplete information, the following spaces

of strategies are often considered, especially for p = 2:

Θp = {θ : θ Ft-predictable, GT (θ) ∈ Lp(P )}

The space Θp can be endowed with the topology induced by the map GT :

θ 7→ ∫
[0,T ]

θtdXt. It is clear that GT (Θp) is a linear subspace of Lp: if X is a

continuous martingale, it turns out that it is also closed, as it follows from

Theorems A.3 and A.4, in the cases p > 1 and p = 1 respectively.

The presence of transaction costs in fact forces a much narrower set of

admissible strategies than Θp. As we argued in the first chapter, in a mar-

ket with proportional costs we should only consider strategies with finite

variation. This leads us to define the following spaces:

Θp
C = {θ ∈ Θp, CT (θ) ∈ Lp(P )}

endowed with the norm:

‖·‖Θp
C

: θ →
(∥∥∥∥

∫ T

0

θtdXt

∥∥∥∥
p

p

+

∥∥∥∥
∫

[0,T ]

ktXtd|Dθ|t
∥∥∥∥

p

p

) 1
p

=

=
(
‖GT (θ)‖p

p + ‖CT (θ)‖p
p

) 1
p

We begin our discussion with the following result:

Proposition 3.1. Let X be a continuous local martingale, and k a continu-

ous, adapted process, such that k̃ = mint∈[0,T ] ktXt > 0 for a.e. ω. Then Θp
C

is a Banach space for all p ≥ 1.
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Proof. Θp
C is a linear subspace of Θp, therefore ‖GT (θ)‖p is a norm. Hence

it is sufficient to prove that ‖CT (θ)‖p is also a norm, and that the space is

complete. Trivially, ‖CT (λθ)‖p = |λ| ‖CT (θ)‖p. Let θ, η ∈ Θp
C . We have:

‖CT (θ + η)‖p =

∥∥∥∥
∫

[0,T ]

ktXtd|D(θ + η)|t
∥∥∥∥

p

≤

≤
∥∥∥∥
∫

[0,T ]

ktXtd|Dθ|t +

∫

[0,T ]

ktXtd|Dη|t
∥∥∥∥

p

≤ ‖CT (θ)‖p + ‖CT (η)‖p

It remains to show that Θp
C is complete. Let θn be a Cauchy sequence for

Θp
C : since it is also Cauchy in Θp and X is continuous, it follows that Θp is

complete by Theorems A.3 and A.4, and we can assume that θn → θ in Θp.

We now show that convergence holds in the ‖CT (θ)‖p norm. Through

a standard Borel-Cantelli argument (see for instance Shiriayev [Shi84], page

257), we obtain a strategy θ′ and a subsequence nk such that CT (θnk−θ′) → 0

almost surely. Since θn is a Cauchy sequence in ‖CT (θ)‖p, by the Fatou’s

Lemma we have

E [CT (θm − θ′)p] = E
[
lim inf

k→∞
CT (θm − θnk)p

]
≤ lim inf

k→∞
E [CT (θm − θnk)p] < ε

which provides the desired convergence.

Remark 3.2. Θp
C is not a Hilbert space even for p = 2. In fact, it is easily

checked that the equality |θ+η|2+|θ−η|2 = 2|θ|2+2|η|2, which is valid in any

Hilbert space, is not satisfied from the deterministic strategies θt = 1{t< 1
3
T}

and ηt = 1{t≥ 2
3
T}.

Remark 3.3. Θp
C is generally not separable. To see this, observe that the set

of deterministic strategies {θx}x∈[0,T ], where θx
t = 1{t≥x}, is uncountable, and

‖θx − θy‖Θp
C
≥ kx(ω) + ky(ω) for all x 6= y and for all p ≥ 1. If ktXt is

uniformly bounded away from zero, it follows that ‖θx − θy‖Θp
C
≥ c for some

positive c, which proves the claim.

The following inequality states a continuous immersion of Θr
C into Θp, for

r > p, provided that
〈X〉

1
2
T

k̃
is sufficiently integrable.
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Proposition 3.4. Let X be a continuous local martingale. For any p, q ≥ 1,

we have:

‖GT (θ)‖p ≤ ‖CT (θ)‖pq

∥∥∥∥∥
〈X〉

1
2
T

k̃

∥∥∥∥∥
pq′

where q′ = q
q−1

.

Proof. For any p, we have, by the Burkholder-Davis-Gundy inequality:

E [|GT (θ)|p] ≤ E

[(∫ T

0

θ2
t d〈X〉t

) p
2

]
≤ E

[(
sup
t≤T

|θt|
)p

〈X〉
p
2
T

]
≤

≤ E
[
|Dθ|([0, T ])p〈X〉

p
2
T

]
≤ E

[
CT (θ)p

(
〈X〉

1
2
T

k̃(ω)

)p]
≤

≤ E [CT (θ)pq]
1
q E




(√
〈X〉T

k̃(ω)

)pq′



1
q′

and, raising both sides to the power 1
p
, the thesis follows.

Remark 3.5. Proposition 3.4 admits a simple financial interpretation. The

transaction cost needed for a gain with a high moment of order p is bounded

if the asset itself has a sufficiently high moment of the same order (a buy and

hold strategy does the job). Otherwise, the strategy itself must amplify the

swings of the market. In this case, the less the market is volatile, the higher

the moment of the strategy.

Remark 3.6. Denoting the Hp norm of a martingale by ‖M‖Hp = E
[
〈X〉

p
2
T

]
,

it is clear from the proof of Proposition 3.4 that we also have:

‖GT (θ)|Hp ≤ ‖CT (θ)‖pq

∥∥∥∥∥
〈X〉

1
2
T

k̃

∥∥∥∥∥
pq′

This is trivial for p > 1, as the Hp norm is equivalent to the Lp norm. On

the other hand, the space H1 is strictly smaller than L1. In this case, the

last observation states that the gain GT (θ) belongs to H1 and, a fortiori, is

a uniformly integrable martingale.
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Remark 3.3 suggests that the norm topology in Θp
C is too restrictive

to provide sufficient compactness on the space of strategies. The following

lemma provides a more reasonable alternative:

Lemma 3.7. Let X be a continuous local martingale, and GT (θn) → GT (θ)

in the Lp-norm. Then:

i) if p > 1, up to a subsequence θn → θ a.s. in d〈X〉tdP ;

ii) if p = 1, there exists some ηn, convex combinations of stoppings of θn,

such that ηn → θ a.s. in d〈X〉tdP .

Proof. i) Let τh be a reducing sequence of stopping times for the local mar-

tingale Xt. For any h, the Burkholder-Davis-Gundy inequality yields:

E [|GT∧τh
(θn)−GT∧τh

(θ)|p] ≥ cpE

[∣∣∣∣
∫ T∧τh

0

(θn
t − θt)

2d〈X〉t
∣∣∣∣

p
2

]
(3.1)

for some positive constant cp. Since the left-hand side converges to zero, it

follows that
∫ T∧τh

0
(θn

t − θt)
2d〈X〉t also converges to zero in probability, and

θn → θ in the measure d〈X〉tdP . Up to a subsequence, convergence holds

a.s., and since d〈Xτh〉tdP is a sequence of measures increasing to d〈X〉tdP ,

we conclude that θn → θ a.s. in d〈X〉tdP .

ii) The situation is more delicate here, because (3.1) is not true in L1.

Denote by τh = inf{t : |Gt(θ)| ≥ h}. The stopped martingales Gt∧τh
(θ)

clearly converge to Gt(θ) almost surely. For each h, Gt∧τh
(θ) ∈ H1 and

we can apply Corollary A.7, obtaining that for some stopping times Tn,h,

Gt∧Tn,h
(θn) ⇀ Gt∧τh

(θ) in σ(H1, BMO). Up to a sequence of convex com-

binations ξn,h
t =

∑Mn

j=n βn,h
j Gt∧Tj,h

(θj), we can assume that ξn,h
t → Gt∧τh

(θ)

in the strong topology of H1. Observe also that ξn,h
t = Gt(η

n,h), where

ηn,h
t =

∑Mn

j=n βn,h
j θj

t 1{t<Tj,h}, and that if h′ < h, then (ξn,h)τh′ → Gt∧τh′ (θ).

Hence, by a diagonalization argument, we consider the sequence ηn,n, which

satisfies the condition Gt∧τh
(ηn,n) → Gt∧τh

(θ) in the H1 norm for all h.

In other words:

lim
n→∞

E

[(∫ T∧τh

0

(ηn,n
t − θt)

2d〈X〉t
) 1

2

]
= 0
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This means that ηn,n → θ in the measure d〈Xτh〉tdP , and up to a subse-

quence, a.s. As in i), we conclude that ηn,n → θ a.s. in d〈X〉tdP .

The next Proposition provides the lower semicontinuity of the cost pro-

cess, with respect to the convergence in dtdP . Intuitively, this means that

taking limits can only reduce transaction costs, because in the limit strategy

some transactions may cancel out, while no new ones can arise.

Proposition 3.8. If θn is bounded in Θp
C, and θn

t → θt a.s. in dtdP then:

CT (θ) ≤ lim inf
n→∞

CT (θn) for a.e. ω (3.2)

and

‖CT (θ)‖p ≤ lim inf
n→∞

‖CT (θn)‖p (3.3)

for all p ≥ 1.

The proof requires a few lemmas:

Lemma 3.9. For a fixed ω, let θn(ω)t → θ(ω)t for a.e. t, and |Dθ(ω)n|([0, T ]) <

C uniformly in n. Then Dθ(ω)n ⇀ Dθ(ω) in the weak star topology of Radon

measures.

Proof. For all φ ∈ C∞
c [0, T ], we have:

ν(φ) = lim
n→∞

∫

[0,T ]

φtdDθn
t = − lim

n→∞

∫

[0,T ]

φ′tθ
n
t dt = −

∫

[0,T ]

φ′tθtdt = Dθ(φ)

It remains to show that the distribution Dθ is in fact a Radon measure, and

this follows from the inequality:

Dθ(φ) ≤ sup
t∈[0,T ]

|φ(t)| lim sup
n→∞

|Dθn|([0, T ]) ≤ C sup
t∈[0,T ]

|φ(t)|

which completes the proof.

The following is a standard result in measure theory (see for instance

[AFP99]):

Lemma 3.10. Let µn ⇀ µ, where µn, µ are Radon measures on I, and

convergence is meant in the weak star sense. Then |µ| ≤ lim infn→∞ |µn|.
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Proof. of Proposition 3.8 By assumption, for a.e. ω, θn
t (ω) → θt(ω) for a.e.

t. To prove (3.2), we show that for all subsequences nj for which CT (θnj(ω))

converges, we have:

CT (θ(ω)) ≤ lim
j→∞

CT (θnj(ω)) (3.4)

If CT (θnj(ω)) → ∞, then (3.4) is trivial. If not, then CT (θnj(ω)) < M(ω)

for all j and hence

|Dθnj(ω)|([0, T ]) <
M(ω)

k̃(ω)

Lemma 3.9 implies that Dθnj(ω) ⇀ Dθ(ω). By Lemma 3.10, we obtain:

CT (θ(ω)) =

∫

[0,T ]

ktXtd|Dθ(ω)| ≤ lim
j→∞

∫

[0,T ]

ktXtd|Dθnj(ω)| = lim
j→∞

CT (θnj(ω))

and (3.2) follows. For (3.3), notice that:

‖CT (θ(ω))‖p
p = E

[(∫

[0,T ]

ktXtd|Dθ(ω)|
)p]

≤ E

[
lim inf
n→∞

(∫

[0,T ]

ktXtd|Dθn(ω)|
)p]

≤

≤ lim inf
n→∞

E

[(∫

[0,T ]

ktXtd|Dθn(ω)|
)p]

= lim inf
n→∞

‖CT (θn(ω))‖p
p < ∞

where the last inequality follows from the uniform boundedness of θn in Θp
C ,

and the previous one holds by Fatou’s Lemma.

3.2 Existence of Optimal Strategies

This section contains the main existence results for optimal hedging strategies

in unconstrained incomplete markets with proportional transaction costs, in

the local martingale case.

In general, the existence of a minimum requires two basic ingredients:

relative compactness of minimizing sequences (up to some transformation

which leaves them minimizing), and lower semicontinuity of the functional.

Compactness is obviously much easier in Lp spaces with p > 1, since it

coincides with boundedness, but this kind of information is rare to obtain

in applications. On the other hand, some measures of risk (maximization of

utility and minimization of shortfall) seem to provide natural bounds on the

L1 norms of optimizing portfolios at expiration.
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Moreover, in the next section we shall see that if X is a semimartingale,

then a minimization problem can be reduced through a change of measure to

a problem in L1. This shows that the L1 case is both mathematically more

challenging, and the most relevant in applications.

We also need the risk functional F : θ 7→ ρ(V c
T (θ) − H) to be lower

semicontinuous (shortly l.s.c.). Proposition 3.8 shows that in general V c
T (·)

is upper semicontinuous with respect to a.s. convergence in dtdP , but not

necessarily continuous. This means that we need a decreasing ρ to ensure

the semicontinuity of F . Also, we are going to take convex combinations of

minimizing strategies, and we need a convex ρ to leave them minimizing.

This leads to the following definition, already introduced in Chapter 1:

Definition 3.11. We define a convex decreasing risk functional as a function

ρ : Lp 7→ R ∪ {+∞}, satisfying the following properties:

i) ρ is convex;

ii) if X(ω) ≤ Y (ω) for a.e. ω, then ρ(X) ≥ ρ(Y ) (ρ is decreasing);

iii) ρ has the Fatou property. Namely, if Xn → X a.s., then

ρ(X) ≤ lim inf
n→∞

ρ(Xn)

We easily see that the above definition provides the desired properties of

semicontinuity and convexity:

Lemma 3.12. Let ρ be a convex decreasing functional, and c > 0. Denoting

by H(θ) = kT XT |θT −HX |+ XT HX + HB and F : θ 7→ ρ (V c
T (θ)−H(θ)), if

θn → θ a.s. in dtdP , we have:

i) F is convex;

ii) F is l.s.c. with respect to a.s. convergence in dtdP .

Proof. i) Since ρ is convex decreasing, and V c
T −H is concave, it follows that

F = ρ ◦ (V c
T −H) is convex.

ii) By Proposition 3.8, we have:

V c
T (θ) ≥ lim sup

n→∞
V c

T (θn)
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Since ρ is decreasing, and H(θ) is continuous by definition:

ρ(V c
T (θ)−H(θ)) ≤ ρ

(
lim sup

n→∞
(V c

T (θn)−H(θn))
)

and finally, by the Fatou property of ρ:

ρ(V c
T (θ)−H(θ)) ≤ lim inf

n→∞
ρ(V c

T (θn)−H(θn))

For convex decreasing functionals we are going to prove an existence result

on bounded sets of Θp
C . Examples include σ-additive coherent risk measures

(see Delbaen [Del00] for details).

A special class of these functionals consists of those which can be written

as ρ(X) = E [ν(X)], where ν : R 7→ R is a convex decreasing function. In

this case, we show that an optimal strategy exists in the whole space Θ1
C ,

since minimizing sequences are automatically bounded. Both the problems

of shortfall minimization and utility maximization belong to this class.

Throughout this section, we make the following:

Assumption 3.13. The measures d〈X〉tdP and dtdP are equivalent.

This assumption implies that X cannot have intervals of constancy, and

that its bracket process 〈X〉t cannot exhibit a Cantor-ladder behavior. It

is necessary to draw inference on CT (θn), which depends on convergence

with respect to the measure dtdP , from the convergence of GT (θn), which

provides information in the measure d〈X〉tdP . In practice, it is satisfied by

all diffusion models, even with Hölder coefficients or volatility jumps.

We start with risk minimization in Θp
C , with p > 1. In this case, we prove

the existence of optimal strategies among those with a moment of order p

not exceeding M . As a result, the minimum will generally depend on the

particular bound considered.

The next lemma provides a class of weakly compact sets:

Lemma 3.14. For C ∈ R+ and p > 1, the set

BC,D = {θ : ‖GT (θ)‖p ≤ C, ‖CT (θ)‖p ≤ D}

is Θp-weakly compact for D ∈ R+ ∪ {+∞}.
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Proof. Let θn ∈ BC,D. For p > 1, Θp is a reflexive Banach space

(it is isometric to a closed subspace of Lp, which is reflexive). Hence, the set

BC = {θ : ‖GT (θ)‖p ≤ C}

is weakly compact in Θp, and up to a subsequence GT (θn) ⇀ GT (θ) ∈ BC .

Since BC,D is convex, by Theorem A.1 there exists a sequence ηn ∈ BC,D of

convex combinations of θn, such that GT (ηn) → GT (θ) in Lp. By Lemma

3.7, it follows that, up to a subsequence, ηn → θ a.s. in d〈X〉tdP , and by

Lemma 3.8, we conclude that θ ∈ BC,D.

Proposition 3.15. Let ρ be a convex decreasing functional, c > 0 and

(HB + XT HX , kT XT HX) ∈ Lp(Ω,FT , P ), with p > 1. For any M > 0

let us denote

Θp
C,M = {θ ∈ Θp

C , ‖GT (θ)‖p ≤ M}
Then the following minimum problem admits a solution:

min
θ∈Θp

C,M

ρ (V c
T (θ)−H(θ))

Proof. Let θn be a minimizing sequence, so that F (θn) → infθ∈Θp
C,M

F (θ).

Since Θp
C,M is weakly compact by Lemma 3.14, up to a subsequence we can

assume that θn ⇀ θ ∈ Θp
C,M . Then, by Theorem A.1, there exists a sequence

of convex combinations ηn =
∑∞

k=n αn
kθk, such that ηn → θ in the strong

topology. By Lemma 3.7, we can assume up to a subsequence that ηn → θ

in the d〈X〉tdP -a.s. convergence, and hence dtdP -a.s. by Assumption 3.13.

Jensen’s inequality implies that:

F (ηn) ≤
∞∑

k=n

αn
kF (θk) ≤ max

n≤k
F (θk)

Passing to the limit:

lim
n→∞

F (ηn) ≤ lim
n→∞

max
n≤k

F (θk) = lim
n→∞

F (θn)

Finally, by the semicontinuity of F , we obtain:

F (θ) ≤ lim
n→∞

F (θn)

hence θ is a minimizer.
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We now turn to risk minimization in Θ1
C . As mentioned before, this

case has the advantage that minimizing sequences are bounded for some

problems considered in applications. On the other hand, a few mathematical

issues arise: a bounded sequence in L1 does not necessarily converge, even

in a weak sense, and the L1 norm of a uniformly integrable martingale is not

equivalent to the H1 norm.

It turns out that the first problem can be overcome through a result of

Komlós [Kom67] (see also Schwartz [Sch86], for a shorter proof). We can cir-

cumvent the latter at the price of using stopping as a further transformation

on minimizing sequences, besides extracting subsequences and taking convex

combinations.

We start with the existence result for general convex decreasing risks:

Proposition 3.16. Let ρ be a convex decreasing functional, c > 0 and (HB +

XT HX , kT XT HX) ∈ L1(Ω,FT , P ). For any M > 0 the following minimum

problem admits a solution:

min
θ∈Θ1

C,M

ρ (V c
T (θ)−H(θ))

Proof. Let θn be a minimizing sequence. By Komlós’ Theorem (A.2), up to

a subsequence of convex combinations ηn =
∑Mn

k=n αn
kθk we can assume that

GT (ηn) → γ a.s. and in L1, and by Yor’s Theorem A.4, there exists some

θ ∈ Θ1 such that γ = GT (θ). To see that θ ∈ Θ1
C , first we apply Lemma

3.7, to obtain a sequence ζn =
∑Mn

j=n βn
j (ηj)Tj,n , such that ζn → θ a.s. Then

Lemma 3.8 implies that CT (θ) ∈ L1(P ), as required. By Jensen’s inequality,

we have:

F (ζn) ≤
Mn∑
j=n

βn
j (ηj)Tj,n ≤ max

n≤j
F ((ηj)Tj,n)

F (ηn) ≤
Mn∑

k=n

αn
kF (θk) ≤ max

n≤k
F (θk)

and, passing to the limit:

lim
n→∞

F (ζn) ≤ lim
n→∞

max
n≤j

F ((ηj)Tj,n) = lim
n→∞

F (ηn)

lim
n→∞

F (ηn) ≤ lim
n→∞

max
n≤k

F (θk) = lim
n→∞

F (θn)
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Finally, by the semicontinuity of F , we obtain:

F (θ) ≤ lim
n→∞

F (θn)

hence θ is a minimum.

In the special case of ρ being the expectation of a convex decreasing

function ν, it turns out that the optimal strategy in Θ1
C coincides with that

in Θ1
C,M , for some value of M . This is shown in the following

Proposition 3.17. Let ν : R 7→ R a strictly convex (at least in one point)

decreasing function, c > 0 and (HB + XT HX , kT XT HX) ∈ L1(Ω,FT , P ).

Then the problem

min
θ∈Θ1

C

E [ν (V c
T (θ)−H(θ))]

admits a solution.

Proof. Let θn be a minimizing sequence, so that F (θn) → infθ∈Θ1
C

F (θ). Since

ν is strictly convex, we have that:

ν(x) ≥ a + bx− − (b− ε)x+ (3.5)

which implies

E
[
Y +

] ≤ 1

ε
(E [ν(Y )]− a + bE [Y ])

for any integrable random variable Y . Substituting Y = V c
T (θn)−H(θn), we

get:

E
[
(V c

T (θn)−H(θn))+
] ≤ 1

ε
(E [ν(V c

T (θn)−H(θn))]− a + bE [V c
T (θn)−H(θn)])

The first term in the right-hand side is bounded by assumption, since θn is a

minimizing sequence. The second term is also bounded, because E [V c
T (θn)] =

c − E [CT (θn)] ≤ c and H(θn) is integrable. Therefore

E [(V c
T (θn)−H(θn))+] is bounded and the inequality

E
[
V c

T (θn)+
] ≤ E

[
(V c

T (θn)−H(θn))+
]
+ E

[
H(θn)+

]

implies that E [V c
T (θn)+] is bounded. In a similar fashion, (3.5) yields:

E
[
Y −] ≤ 1

b
(E [ν(Y )] + (b− ε)E

[
Y +

]− a)
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Substituting again Y = V c
T (θn) − H(θn), and using the foregoing result, we

conclude that supn E |V c
T (θn)| < ∞. Also:

E |V c
T (θn)| ≥ E [−V c

T (θn)] = −c + E [CT (θn)]

which implies that supn E [CT (θn)] < ∞, and hence supn E [|GT (θn)|] < ∞.

Now that boundedness is shown, the thesis follows from Proposition 3.16 for

a suitable M .

Example 3.18 (Shortfall risk). In Proposition 3.17, choosing ν(x) = x−, we

obtain the existence of a shortfall minimizing strategy, that is a solution of

the problem

max
θ∈Θ1

C

E
[
(H(θ)− V c

T (θ))+]

Without transaction costs, this problem has been solved for European op-

tions by Cvitanic and Karatzas [CK99] in a complete market, and by Cvi-

tanic [Cvi00] in incomplete and constrained markets. In both cases, they use

the duality approach, as opposed to the Neyman-Pearson lemma approach,

employed by Föllmer and Leukert [FL00] to solve the same problem in an

unconstrained incomplete market.

Choosing ν(x) = (x−)p, with p > 1, one obtains a solution for the problem

studied by Pham [Pha00] in discrete time.

Example 3.19 (Utility maximization). Let U be a concave bounded increasing

function. The utility maximization problem

max
θ∈Θ1

C

E [U (V c
T (θ)−H(θ))]

admits a solution. In fact, apply Proposition 3.17, with ν(x) = −U(x).

This problem has been studied for European options in a Markovian model

by Hodges and Neuberger [HN89] and developed more rigorously by Davis,

Panas, and Zariphopoulou [DPZ93]: in both papers, a stochastic control

problem is considered, and the assumptions on the model lead to a Hamilton-

Jacobi-Bellmann equation which can be solved in a weak sense. In more

general models, the same problem has been studied in the frictionless case by

Cvitanic and Karatzas [CK96] and by Kramkov and Schachermayer [KS99]

with the convex duality approach.
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Remark 3.20. The variable H needs not be a function of XT alone: in fact

we only require that it is F -measurable. This means that the existence result

is valid for a general path-dependent option, as long as its exercise is fixed

at time T . This excludes American-type options.

3.3 Constrained Problems

In this section we study the problem of hedging with constraints on the

space of strategies. Essentially, we consider two types of constraints: those

on the position in the risky asset, such as limits on short-selling, and those

on the portfolio value, such as budget constraints (which here play the role

of constraints, rather than assumptions on admissible strategies).

The existence of a constrained minimum depends on two conditions: the

stability of the restricted set of admissible strategies under the transforma-

tions used on minimizing sequences, and its closedness in the topology where

the risk functional is lower semicontinuous.

In this setting, it becomes evident that the more transformations are used

in the proof of the unconstrained problem, the smaller is the set of tractable

constraints. Since in the case of Lp we only take convex combinations of

strategies, it follows that we can obtain an existence result for constraints of

the type θt ∈ K, where Kt(ω) is a closed convex subset of Rd.

On the contrary, in the L1 case we also use stopped strategies, hence

Kt(ω) will have to be a closed convex containing zero. At any rate, it seems

that these conditions are not restrictive for most applications.

To formalize these requirements, we give the following:

Definition 3.21. Given K ⊂ R×Ω×Rd, we we denote by Kt(ω) the section

of K with respect to the first two components (t, ω).

We say that K is a convex constraint if:

i) K is measurable with respect to P × B(Rd), where P is the predictable

σ-algebra on R× Ω, and B(Rd) the Borel σ-algebra;

ii) Kt(ω) is convex a.s. in dtdP ;

iii) Kt(ω) is closed a.s. in dtdP .
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We say that a strategy θ satisfies the constraint K if θt(ω) ∈ Kt(ω) a.s. in

dtdP .

It is easily checked that:

Corollary 3.22. If K is a convex constraint, we have that:

i) If θ and η satisfy K, then for each λ ∈ (0, 1) the strategy (1−λ)θ + λη

satisfies K;

ii) If {θn}n∈N satisfy K and θn → θ a.s. in dtdP , then θ satisfies K.

The next proposition establishes the existence of a minimum for convex

constraints.

Proposition 3.23. Let K be a convex constraint. Denoting by

Γp(K) = {θt ∈ Θp
C : θ satisfies K}

if Γp(K) is not empty, we have that:

i) if p > 1, then for all M > 0 the minimum problem

min
θ∈Θp

C,M∩Γp(K)
ρ (V c

T (θ)−H(θ))

admits a solution.

ii) if p = 1, and 0 ∈ Kt(ω) dtdP -a.s., then for all M > 0 the minimum

problem

min
θ∈Θ1

C,M∩Γ1(K)
ρ (V c

T (θ)−H(θ))

admits a solution.

Proof. Reread the proof of Propositions 3.15 and 3.16, observing that convex

combinations of strategies in Γp(K) remain in Γp(K) and that (for 3.16) a

strategy in Γ1(K), if stopped, remains in Γ1(K). Finally, if θn → θ a.s. in

dtdP , and θn ∈ Γp(K), then θ ∈ Γp(K).

Example 3.24 (Short-selling). For K = {(t, ω, x) : xi ≥ 0 ∀ i ∈ {1 . . . d}},
the constraint above becomes θt ≥ 0 for all t, which amounts to forbid the

short sale of X. Notice that in this case the constraint is deterministic.
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Example 3.25 (Budget Constraints). Consider a solvability condition, which

in our notation looks like:

V c
t (θ)− ktXt|θt| ≥ −lt

where lt is the maximum credit line available at time t. This constraint

is clearly stable with respect to the operations considered, but apparently

it does not fit in Proposition 3.23, where K should be written explicitly.

Indeed, in this example it can be shown that:

Kt(ω) =




Rd if t < τ

0 if t ≥ τ

where τ is defined as:

τ = inf{t : V c
t (θ)− ktXt|θt| = −lt}

In other words, the agent is unconstrained until the solvency limit is hit, then

the position must be closed for the rest of the period.

As mentioned in Remark 1.15, the presence of budget constraints allows

to consider a larger class of risk functionals. In fact we have the following:

Theorem 3.26. Let ρ be a σ-additive coherent risk measure (see Delbaen

[Del00] for details). In other words, ρ(X) = limk→∞ supP∈P EP [−(X ∧ k)],

where P is a set of probabilities, all absolutely continuous with respect to P .

If K is defined as in Example 3.25, H is bounded, and P is weakly rela-

tively compact, the same minimum problems as in Proposition 3.23 admit a

solution.

We recall the following Lemma from Delbaen [Del00]:

Lemma 3.27. Let P be a weakly relatively compact set of absolutely contin-

uous probabilities. If Xn is uniformly bounded in L∞(Ω) and Xn → X a.s.,

then limn→∞ ρ(Xn) = ρ(X).

Proof. of Theorem 3.26 A coherent risk measure has all the properties of

a convex risk functional, except that the Fatou property is satisfied only

by bounded sequences of random variables. As a result, the semicontinuity
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Lemma 3.12 generally fails. We now show that, given a minimizing sequence

θn, under the additional assumptions above we can obtain another minimiz-

ing sequence ηn such that F : θ 7→ ρ(V c
T (θ)−H(θ)) is lower semicontinuous

with respect to ηn.

Let θn be a minimizing sequence, and denote by ρ = infn F (θn). As

in the proofs of Propositions 3.15 and 3.16, up to a subsequence of convex

combinations we can assume that V c
T (θn) → V c

T (θ) a.s. for some admissible

strategy θ. Also, by definition of ρ, for each ε there exists some n and kn

such that ρ((V c
T (θn)−H(θn)) ∧ k) < ρ + ε for all k > kn.

By the assumptions on K, V c
T (θn) > −l for all n. Define now the stopping

times τk = inf{t : V c
t (θ) ≥ k}. By construction, for the stopped strategies

ηn,k
t = θn

t∧τk
and ηk

t = θt∧τk
, we have that V c

T (ηn,k) ≤ k. Now, the sequence

V c
T (ηn,k) is uniformly bounded in L∞, P is weakly relatively compact, and

limn→∞ V c
T (ηn,k)) = V c

T (ηk)) = V c
T (θ) ∧ k a.s. By the above lemma we have

that

lim
n→∞

ρ(V c
T (ηn,k)−H(ηn,k)) = ρ(V c

T (ηk)−H(ηk)) = ρ(V c
T (θ) ∧ k −H(ηk))

and, since H is bounded,

lim
k→∞

ρ(V c
T (ηk)−H(ηk)) = lim

k→∞
ρ(V c

T (θ) ∧ k −H(ηk)) =

= lim
k→∞

ρ((V c
T (θ)−H(ηk)) ∧ k) = ρ(V c

T (θ)−H(η))

Therefore ηk is a minimizing sequence, and F is continuous with respect to

it.

3.4 The Semimartingale Case

In this section we discuss the problems arising in the more realistic case where

X is a semimartingale, and give an extension of the foregoing results to this

setting.

The main idea is to reduce to the previous martingale case, by the well-

known technique of a change of measure. To exclude arbitrage, throughout

this section we make the following:



44 Problems with Integrability Conditions

Assumption 3.28. X is a continuous semimartingale which admits at least

a local martingale measure.

As anticipated in chapter 1, the main difference from the martingale case is

that the space:

Θp = {θ : θ Ft-predictable, (θ ·X)T ∈ Lp(P )}

in general may not be closed, and hence is not suitable for studying optimiza-

tion problems. On the contrary, the space of contingent claims Kp proposed

by Delbaen and Schachermayer [DS96] provides closure properties analogous

to the martingale case. This means that the natural extension of Θp
C to the

semimartingale case is given by:

Θp
C(P ) = {θ : GT (θ) ∈ Kp, CT (θ) ∈ Lp(P )}

We now see how a minimization problem of the type:

min
θ∈Θp

C(P )
ρ(V c

T (θ)−H(θ))

fits into the framework outlined in the previous sections. We have the fol-

lowing:

Proposition 3.29. Let 1 ≤ p ≤ ∞, X a continuous semimartingale locally

in Lp(P ), and Q ∈Me
p′(P ). Then the problem:

min
θ∈Θp

C,M (P )
ρ(V c

T (θ)−H(θ)) (S)

admits a solution for any M > 0.

Proof. Since the set {dQ
dP

: Q ∈ Me
p′(P )} is convex and closed in Lp′(P ), it

follows that there exists a countable set of martingale measures {Qi}i, such

that
{

dQi

dP

}
i
is dense in {dQ

dP
: Q ∈Me

p′(P )} in the Lp′(P ) norm.

By the Hölder inequality, the identity map Id : Kp(P ) 7→ GT (Θ1(Qi))

is a continuous operator for all i. Note also that if CT (θ) ∈ Lp(P ), then

CT (θ) ∈ L1(Qi).
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Let θn be a minimizing sequence for (S). Since the set of simple strategies

is dense both in Kp(P ) and Θ1
C,M ′(Qi), it follows that θn is a minimizing

sequence for the problem:

min
θ∈Θ1

C,M′ (Qi)
ρ(V c

T (θ)−H(θ)) (M)

for a suitable M ′. By Proposition 3.16 we can extract a minimizing sequence

of convex combinations of θn converging to a minimizer θ of (M). Since

minimizing sequences are stable under convex combinations, we can take

further subsequences of convex combinations converging to θ in L1(Qi) for

any finite set of i. By a diagonalization argument, we obtain a ηn such that

ηn → θ in L1(Qi) for all i.

If Q ∈ Me
p′(P ), we can assume up to a subsequence that dQi

dP
→ dQ

dP
in

Lp′(P ). By construction, for all i we have that:

EQi
[GT (θ)] = 0

and as i → ∞, we obtain that EQ [GT (θ)] = 0 for any Q ∈ Me
p′(P ). By

Theorem 1.8, it follows that θ ∈ Kp. Also, Lemma 3.8 implies that CT (θ) ∈
Lp(P ). Therefore θ ∈ Θp

C(P ), and the proof is complete.

Remark 3.30. The diagonalization procedure in Proposition 3.29 is necessary

since the map T : Kp(P ) 7→ GT (Θ1(Q)) is generally not onto (see Delbaen

and Schachermayer [DS96], Remark 2.2 c) for details).
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Chapter 4

Mean-Variance Analysis and

Transaction Costs

In the previous chapters we considered a large class of risk functionals, im-

posing some natural economic requirements such as nonsatiation and risk-

aversion. However, some classical problems in finance do not fit in this frame-

work. The most prominent example is probably mean-variance analysis.

In problems of mean-variance optimization, economic agents seek to min-

imize the quadratic norm of their final position, possibly under constraints on

expected return. This approach has obvious advantages in terms of tractabil-

ity, although the choice of variance as a risk measure lends itself to the obvious

critique that gains as well as losses are equally penalized. In other words,

the nonsatiation requirement is not satisfied.

Nevertheless, this is generally a harmless argument, since mean-variance

analysis often offers insights that are valid in more general settings. Indeed,

all classical Finance Theory was first built upon the mean-variance criterion,

and several results were later extended to the context of utility functions.

4.1 The Dissipation effect

Our goal is to show that the analogy between mean-variance analysis and the

ordinary utility maximization breaks down in presence of transaction costs.

Intuitively, transaction costs alter the structure of the problem, allow-
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ing agents to freely dispose of their excess capital. As a result, choosing a

risk measure which does not fulfill the nonsatiation requirement will lead to

“optimal” strategies which generate fictitious trading, which has no other

purpose than avoiding penalized gains.

This phenomenon occurs in a subtle manner. Indeed, our parametrization

of trading strategies is based on number of shares, rather than on cumula-

tive purchases and sales, in an effort to avoid suboptimal strategies (which,

by the way, become desirable in the mean-variance setting). Thus, rather

than devising directly a riskless dissipating strategy, it is easier to consider

a sequence of strategies which delivers the same result in the limit.

Mathematically, we can observe the following: the quadratic norm fails

to satisfy the lower semicontinuity property with respect to the a.s. conver-

gence in dtdP . As a result, some minimizing sequences do not converge to

minimizers, but to “suboptimal” strategies, which do not meet the optimality

requirement because of their lack of dissipation.

Since this chapter is mainly devoted to exhibit negative results, we shall

not pursue full generality. In fact, examples will be limited to square-

integrable continuous semimartingales.

The next proposition provides the existence of minimizing strategies used

in the subsequent examples:

Proposition 4.1. Let Xt be a continuous process. For each increasing pre-

dictable process Ct there exists a sequence of strategies θn such that:

lim
n→∞

∫

[0,T ]

θn
t dXt = 0 a.s. and lim

n→∞

∫

[0,T ]

Xtd|Dθn
t | = CT a.s.

and hence:

V c
T (θn) → c− kCT a.s.

In addition, if CT and XT are p-integrable, then:

E [|V c
T (θn)|p] → E [|c− kCT |p]

Proof. Define the approximate process

Cn
t = Cbt2nc2−n
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It is clear that Cn converges to C a.s. in dPdt as n →∞. Denoting by δx the

usual Dirac measure on the point x, we define θn in terms of its derivative:

Dθn =
2nT∑

k=1

1

2

(
Ck2−n − C(k−1)2−n

)
(

δk2−n

Xk2−n

−
δ(k+ 1

2
)2−n

X(k+ 1
2
)2−n

)

and hence θt = Dθ([0, t]). since X is continuous, it is easy to see that, for

a.e. ω, Dθn converges to the null measure in the weak star topology. Hence

we have:

lim
n→∞

∫

[0,T ]

θn
t dXt = lim

n→∞

∫

[0,T ]

(XT −Xt)dDθn
t = 0 a.s.

which proves the first part of the statement. Note also that:

|Dθn| =
2nT∑

k=1

1

2

(
Ck2−n − C(k−1)2−n

)
(

δk2−n

Xk2−n

+
δ(k+ 1

2
)2−n

X(k+ 1
2
)2−n

)

and therefore:

∫

[0,T ]

Xtd|Dθn
t | =

b2nT c∑

k=1

(
Ck2−n − C(k−1)2−n

)
= CbT2nc2−n

which proves that convergence holds a.s. The last part of the thesis follows

by dominated convergence.

As a corollary of the above proposition, we obtain that the “optimal”

minimum-variance portfolio under transaction costs consists in dissipating

all initial wealth. This shows that the mean-variance criterion leads to para-

doxical results, when combined with transaction costs.

Corollary 4.2. Let X be a continuous, square-integrable semimartingale.

Then we have:

inf
θ∈Θ2

C

E
[
(V c

T (θ))2] = 0

Proof. The infimum is obviously nonnegative. By Proposition 4.1, there

exists a sequence θn such that
∫

[0,T ]
θn

t dXt → 0 and
∫

[0,T ]
Xtd|Dθn

t | → − c
k

a.s. (and hence V c
T (θn) → 0 a.s.). Since X is square-integrable, convergence

holds in L2, θn is a sequence of minimizing strategies, and the infimum is

0.
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Remark 4.3. The possibility to dissipate wealth is not an exclusive feature of

markets with transaction costs. In fact, it has been long recognized that in

frictionless markets some strategies may lead to sure losses, and this can be

achieved through reverse doubling strategies (see for instance Schachermayer

[Sch92] for an explicit example, and Delbaen and Schachermayer [DS97] for

a thorough treatment of this subject).

However, these dissipating strategies are fundamentally different from

those presented here, and indeed forbidden in the context of frictionless mean-

variance hedging. In fact, without transaction costs the space Θ2
C reduces

to a set of strategies leading to stochastic integrals bounded in L2. This

condition in turn implies the uniform integrability of V c
T (θ). As a result,

EQ [V c
T (θ)] = c for some martingale measure Q, and this in not compatible

with the possibility that V c
T (θ) < c a.s.

Corollary 4.2 is the easiest example of the dissipation effect, but this

phenomenon occurs in full generality with mean-variance hedging. We now

provide a precise statement, which can also be seen as a further argument in

favor of decreasing risk functionals:

Proposition 4.4. Let X be a continuous, square-integrable semimartingale,

and H ∈ L2(FT , P ) a random variable. Then we have:

inf
θ∈Θ2

C

E
[
(V c

T (θ)−H)2] = inf
θ∈Θ2

C

E
[[

(V c
T (θ)−H)−

]2
]

(4.1)

and hence, if there exists an optimal strategy θ for the problem

min
θ∈Θ2

C

E
[
(V c

T (θ)−H)2] (4.2)

then

P (V c
T (θ) > H) = 0

Proof.

Denote l = infθ∈Θ2
C

E
[
(V c

T (θ)−H)2] and m = infθ∈Θ2
C

E
[[

(V c
T (θ)−H)−

]2
]
.

We obviously have that l ≥ m, so we need to show that the reverse inequality

holds.
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Let η be a strategy such that E
[
(V c

T (η)−H)2] < l + ε. We claim that

V c
t (η) converges to V c

T (η) in L2(P ) as t → T . In fact, we have that:

|V c
T (η)−V c

t (η)| =
∣∣∣∣
∫

(t,T ]

ηsdXs − k

∫

(t,T ]

Xsd|Dη|s − k (|ηT |XT − |ηt|Xt)

∣∣∣∣ ≤

≤
∣∣∣∣
∫

(t,T ]

ηsdXs

∣∣∣∣ + k

∣∣∣∣
∫

(t,T ]

Xsd|Dη|s
∣∣∣∣ +

+ k |ηT | |XT −Xt|+ kXt ||ηT | − |ηt|| (4.3)

Denoting the Doob-Meyer decomposition X = M + A, for the first term we

have:

E

[∣∣∣∣
∫

(t,T ]

ηsdXs

∣∣∣∣
2
]

= E

[∣∣∣∣
∫

(t,T ]

ηsdMs +

∫

(t,T ]

ηsdAs

∣∣∣∣
2
]
≤

≤ 2

(
E

[∣∣∣∣
∫

(t,T ]

ηsdMs

∣∣∣∣
2
]

+ E

[∣∣∣∣
∫

(t,T ]

ηsdAs

∣∣∣∣
2
])

=

= 2

(
E

[∫

(t,T ]

η2
sd〈M〉s

]
+ E

[∣∣∣∣
∫

(t,T ]

ηsdAs

∣∣∣∣
2
])

By the continuity of X, d〈M〉s is diffuse, and by the existence of a martingale

measure, dAt ¿ d〈M〉t, hence convergence follows. Analogously, the third

term in (4.3) converges. For the second and the last terms, convergence

follows from the left continuity of η at T , which holds by assumption.

The above argument shows that for some δ > 0 we have:

E
[(

V c
T−δ(η)−H

)2
]

<l + 2ε and

E
[(

V c
T (η)− V c

T−δ(η)
)2

]
<ε

Analogously, we can assume that:

E
[
(H − E [H| FT−δ])

2] < ε

Now we define the strategy ζ as follows: up to time T − δ we set ζt = ηt.

From time T − δ onwards, we follow a strategy provided by Proposition 4.1,

which delivers a final payoff V c
T−δ + χ such that

E [χ| FT−δ] = −max(0, V c
T−δ(η)− E [H| FT−δ])
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and the variance of χ is smaller than ε.

Thus, denoting by A = {V c
T−δ(η)− E [H| FT−δ] > 0} we obtain:

E
[
(V c

T (ζ)−H)2] = E
[(

V c
T−δ(η) + χ−H

)2
]

=

= E
[
E

[
(H − E [H| FT−δ])

2 1A

∣∣FT−δ

]]
+ E

[(
V c

T−δ(η)−H
)2

1Ω\A
]
≤

≤ ε + E
[(

V c
T−δ(η)−H

)2
1Ω\A

]
< 2ε + E

[
(V c

T (η)−H)2 1Ω\A
]

Also, note that as δ → 0 the indicator of the set A converges a.s. to the

indicator of the set {V c
T (η) > H}, and hence for a small enough choice of δ

we obtain:

E
[
(V c

T (ζ)−H)2] ≤3ε + E
[
(V c

T (η)−H)2 1{V c
T (η)≤H}

]
=

=3ε + E
[[

(V c
T (η)−H)−

]2
]

The above discussion shows that from any minimizing sequence ηn, such that

infn E
[
(V c

T (ηn)−H)2] = l we can construct another sequence ζn such that

infn E
[[

(V c
T (ηn)−H)−

]2
]

= l. This proves that l ≤ m.

Suppose that θ is a minimizer for problem 4.2. Then we must have that

P (V c
T (θ) > H) = 0, otherwise l > m, which is absurd.

4.2 Notes

Remark 4.5. The difficulty to apply the mean-variance criterion to the trans-

action costs setting was already recognized in discrete time by Motoczinsky

[Mot99]. He considered two different mean-variance hedging problems: one

on a general space of strategies Θ, allowing dissipation, and one on the space

Θ0 of “reasonable” strategies, where simultaneous buying and selling is for-

bidden.

He proved the existence of a solution in the space Θ, and observed that

for some contingent claims the infimum on Θ0 may not coincide with the

minimum of Θ.

Our results suggest that the gap between the two infima should not be

large, and primarily due to the discrete-time setting, which somehow reduces

the ability for achieving dissipation by means of “reasonable” strategies. In
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other words, if an agent is forbidden to buy and sell at the same time in

discrete time, he will try to circumvent such restriction by buying more, only

to sell the excess amount at a nearby date. This procedure will create some

extra noise, but as the time step becomes smaller and smaller it will enable

the agent to effectively avoid the ban on dissipation.
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Chapter 5

Problems with

Budget Constraints

While the approach of imposing integrability conditions to avoid arbitrage is

very natural in the context of quadratic risk criteria, the arguments given in

the previous chapter show that this criterion has some drawbacks, especially

in combination with transaction costs.

Also, there are compelling economic arguments in favor of arbitrage re-

strictions which do not depend on the probability measure used by a partic-

ular agent, but only on its equivalence class. For instance, an investor may

summarize his views with a probability measure P , and devise some strategy

θ which optimizes his goal. However, in order to implement this strategy he

may need to borrow from a bank, which has a different measure P̃ . While

the investor and his bank will generally disagree on the probability of a given

event, we can expect that they agree on which events should be deemed

as impossible, and define admissible strategies only in terms of statements

which can be agreed upon.

This approach leads to definition 1.9 of admissible strategies, which has

been widely adopted in Mathematical Finance. In this chapter we study

problems of optimal investment on this class of strategies, removing many

of the restrictions made in chapter 3. In particular, we relax the continuity

assumption on the process X, allowing for quasi-left continuous processes.

More importantly, we also drop the semimartingale assumption.
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The quasi-left continuity condition essentially means that the jumps of the

asset process X occur at totally inaccessible stopping times. In other words,

any attempt of predicting a jump with the information available before is

deemed to fail almost surely. Some financial risks do not typically satisfy

this requirement: for instance, interest rate changes are generally announced

at previously scheduled meetings, which are not only accessible but indeed

predictable. However, this difficulty can be generally overcome with small

model modifications, without altering the structure of the problems: in the

example of interest rates, one could replace the predictable jump with a

totally inaccessible jump uniformly distributed in an arbitrarily small time

interval, thus preserving quasi-left continuity.

Dropping the semimartingale assumption requires particular care for its

arbitrage consequences, and in chapter 2 we have seen some criteria to stay on

the safe side. However, it turns out that ensuring no-arbitrage is not enough

in presence of transaction costs, as this does not guarantee the compactness

of the space of admissible strategies. To achieve this, we need the following

(see also Proposition 2.16 for the relationship with the discrete time condition

introduced by Schachermayer [Sch01a]):

Definition 5.1. We say that a market with transaction costs k is compact

arbitrage free if it γ-arbitrage free and:

min
1≤i≤d

essinf
t∈[0,T ]

(ki
t − γi

t) > 0 a.s.

Essentially, the above condition requires a minimal size for transaction

cost, so that if a strategy is to be admissible, then it must lead to a bounded

(in a sense to be made precise) trading volume. This is basically the key idea

to the following section.

5.1 Compactness of admissible strategies

Our general approach to prove the existence of optimal strategies remains

the direct method, therefore we still look for compactness and semicontinuity

results.
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The main difference with chapter 3 is that the weak convergence in Lp

will now be replaced with convergence in probability, which does not depend

on the particular measure P .

We start our discussion with the following:

Definition 5.2. We say that a sequence of processes θn converges to θ count-

ably almost surely (c.a.s.) if for almost every ω there exists a countable set

N(ω) ⊂ [0, T ] such that θn(ω) → θ(ω) for all t /∈ N(ω).

Remark 5.3. It is immediately seen that convergence c.a.s. implies a.s. con-

vergence in dtdP , and indeed we will only need the latter in the main results

of this chapter. However, the more precise result of c.a.s. convergence will

allow an alternative and simpler proof for the semimartingale case, and this

is the reason why we introduce the above definition.

The main result of this section is the following:

Proposition 5.4. Let X be compact arbitrage free and satisfy 1.10. If θn ∈
Ak

c is a sequence of finite variation processes, then there exists a sequence

ηn ∈ conv(θn, θn+1, . . . ) such that ηn converges c.a.s. to a finite variation

process θ ∈ Ak
c .

We break the proof of Proposition 5.4 into three parts. First we recall

the following Lemma from Delbaen and Schachermayer [DS94]:

Lemma 5.5 ([DS94], Lemma A1.1). Let (fn)n≥1 be a sequence of [0,∞)

valued measurable functions on a probability space (Ω,F , P ). There exists a

sequence gn ∈ conv(fn, fn+1, . . . ) such that (gn)n≥1 converges almost surely

to a [0,∞] valued function g.

If conv(fn, fn+1, . . . ) is bounded in L0, then g is finite almost surely. If

there are α > 0 and δ > 0 such that for all n: P (fn > α) > δ, then

P (g > 0) > 0.

The following Lemma can be seen as a compactness result for Fatou con-

vergence (see Kramkov [Kra96], Lemma 4.2) but here convergence is sought

within the class of predictable processes (see also Kabanov and Last [KL02],

Lemma 3.4 for a similar result in the context of transaction costs):



58 Problems with Budget Constraints

Lemma 5.6. Let θn be a sequence of processes of finite variation, such that

the set conv({‖Dθi‖T}i∈N) is bounded in L0(Ω).

Then there is a sequence ηn ∈ conv(θn, θn+1, . . . ) such that ηn converges

c.a.s. to a finite variation process θ.

Proof. By the Hahn decomposition, a function of bounded variation is a

difference of two monotone functions. Hence we can write θn
t = Ln

t − Mn
t ,

where Ln and Mn are increasing processes which are essentially unique under

the condition that |Dθn|t = Ln
t + Mn

t .

For a given time t, we have that:

∑

k≥n

αkL
k
t ≤

∑

k≥n

αk|Dθk|t ≤
∑

k≥n

αk|Dθk|T a.s.

therefore conv(Ln
t , L

n+1
t , . . . ) is bounded in L0. By Lemma 5.5, up to a

sequence of convex combinations we can assume that Ln
t converges almost

surely to some real valued variable Lt.

By a diagonalization argument, up to a sequence of convex combinations

we can assume that, for all t ∈ {0, T} ∪ (Q ∩ (0, T )), Ln
t converges almost

surely to a process (Lt)t∈Q∩[0,T ]. Clearly, Lt is an increasing process.

We define L̃t = sups∈Q∩(0,t) Ls. Since L̃ is left-continuous, it is obviously

predictable. We now show that, for each ω, Ln
t → L̃t everywhere but in the

discontinuity points of L̃(ω), which are at most a countable set. In fact, if

L(ω) is continuous in t, for any ε > 0 we can find p, q ∈ Q ∩ [0, T ] such that

p < t < q and Lp(ω) ≤ Lq(ω) ≤ Lp(ω) + ε. Passing to the limit, we get:

Lp(ω) ≤ lim inf
n→∞

Ln
t (ω) ≤ lim sup

n→∞
Ln

t (ω) ≤ Lp(ω) + ε

Since ε is arbitrary, it follows that Ln
t converges to L̃t.

Repeating the same argument for M , we obtain that, up to a sequence of

convex combinations, Ln and Mn respectively converge c.a.s. to increasing

processes L̃ and M̃ . As a result, Ln
t −Mn

t converges to θt = L̃t − M̃t, which

is a finite variation process.

So far no reference is present to the asset process. The assumptions on

X in Proposition 5.4 will now be needed to link the admissibility of trading

strategies to the boundedness condition in Lemma 5.6.
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The following lemma must be well-known, but since we have no reference

we report its short proof.

Lemma 5.7. Let X and {Yi}i∈I be strictly positive, finite valued, random

variables. Then {Yi}i∈I is bounded in L0 if and only if {XYi}i∈I is bounded

in L0.

Proof. Suppose that {Yi}i∈I is bounded in L0. We obviously have:

P (XYi > M) = P (XYi > M, X ≤ N) + P (XYi > M, X > N) ≤

≤ P (Yi >
M

N
) + P (X > N)

With a suitable choice of M and N , both these terms are arbitrarily small,

as X is finite valued, and {Yi}i∈I is bounded in L0.

The reverse implication follows from the first one, denoting X ′ = 1
X

and

Y ′
i = XYi.

Remark 5.8. An immediate consequence of the above lemma is that bound-

edness in L0 is invariant under a change to an equivalent measure.

Proof of Proposition 5.4. For any θ ∈ Ak
c , we have:

− c ≤ (θ ·X)T −
∫

[0,T ]

ksXs · d|Dθ|s − kXT · |θT | =

= (θ ·X)T −
(∫

[0,T ]

γsXs · d|Dθ|s + γT XT · |θT |
)
−

−
(∫

[0,T ]

(ks − γs)Xs · d|Dθ|s + (kT − γT )XT · |θT |
)

Integrating the second term by parts, and recalling the that X is γ-arbitrage

free, we obtain that (see also Lemma 2.9):

(θ ·X)T −
(∫

[0,T ]

γsXs · d|Dθ|s + γT XT · |θT |
)
≤ (θ · X̃)T

and hence:

−c ≤ (θ · X̃)T −
((

min
1≤i≤d

essinf
t∈[0,T ]

(ki
t − γi

t)

)
ξT · |Dθ|T + (k − γ)XT · |θT |

)
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where ξt = infs∈[0,t] Xs. Under the measure Q, the stochastic integral (θ ·X̃)T

is a local martingale bounded from below, thus a supermartingale. Taking

expectations, we have:

E [ξT · |Dθ|T + XT · |θT |] ≤ c

min1≤i≤d essinft∈[0,T ](ki
t − γi

t)

This inequality is clearly stable under convex combinations of strategies, and

therefore the closed convex hull of the set {ξT · |Dθ|T : θ ∈ Ak
c} is bounded

in L1(Q) and hence in L0(Q).

Note that ξT > 0 a.s. To see this, denote by τ = inf{t : Xt = 0 or Xt− =

0}. Since X is γ-arbitrage free, we have that τ = inf{t : X̃t = 0 or X̃t− = 0}.
But then we obtain that τ > T a.s., as X̃ is a strictly positive martingale

under Q.

This implies that we can apply Lemma 5.7, and we obtain that the closed

convex hull of {‖Dθ‖T : θ ∈ Ak
c} is bounded in L0(P ).

Now, let θn ∈ Ak
c be a sequence of finite variation processes. From the

above discussion it follows that the assumptions of Lemma 5.6 are satisfied,

therefore we can assume, up to a sequence of convex combinations, that θn

converges c.a.s. to some finite variation process θ. The admissibility of θ

follows from Proposition 5.13 (or Proposition 5.10, if X is continuous).

5.2 Existence of optimal strategies

Now we need the lower semicontinuity of risk functionals with respect to

c.a.s. convergence. For convex decreasing functionals, it will be enough to

check that the portfolio value V c
t is upper semicontinuous, and this is the

point where we shall need the quasi-left continuity of X.

We begin with a lemma which links the pointwise convergence of θn
t (ω)

to the weak star convergence of the measures Dθn(ω).

Lemma 5.9. If conv({‖Dθi‖T}i∈N) is bounded in L0 and θn
t → θt a.s. in

dtdP , then up to a sequence of convex combinations

Dθn
t ⇀ Dθt for a.e. ω.

Proof. By Lemma 5.5, up to a sequence of convex combinations we can as-

sume that limn→∞ ‖Dθn‖T = V (ω), with V < ∞ a.s.
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We have:

{lim sup
n→∞

‖Dθn‖T > M} = {lim inf
n→∞

‖Dθn‖T > M} =
⋃

k

⋂

n≥k

{‖Dθn‖T > M}

and hence, since ‖Dθn‖T is bounded in L0:

P (lim sup
n→∞

‖Dθn‖T > M) = P

(⋃

k

⋂

n≥k

{‖Dθn‖T > M}
)
≤ sup

n
P (‖Dθn‖T > M) ≤ ε

It follows that lim supn→∞ ‖Dθn‖T < ∞ a.s. and hence supn ‖Dθn‖T < ∞
a.s. Since θn

t → θt a.s., the thesis follows by Lebesgue dominated convergence

theorem.

5.2.1 Continuous processes

Here we consider the case where X is a continuous process. In this setting, the

semicontinuity of V c
t can be shown using only arguments of duality between

continuous functions and Radon measures.

Proposition 5.10. If θn ∈ Ak
c , conv({‖Dθi‖T}i∈N) is bounded in L0 and

θn
t → θt a.s. in dtdP , then we have:

V c
T (θ) ≥ lim sup

n→∞
V c

T (θn) for a.e. ω (5.1)

Proof. By lemma 5.9, we have that Dθn
t ⇀ Dθt, and hence, integrating by

parts:

(θ ·X)T = XT θT −X0θ0+ −
∫

(0,T ]

XtdDθt =

= lim
n→∞

(
XT θn

T −X0θ
n
0+ −

∫

(0,T ]

XtdDθn
t

)
= lim

n→∞
(θn ·X)T

and by the semicontinuity of the variation, we have:

∫

[0,T ]

Xt · d|Dθ|t ≤ lim inf
n→∞

∫

[0,T ]

Xt · d|Dθn|t

which completes the proof.
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From the upper semicontinuity of V c
T we easily obtain the lower semiconti-

nuity of F :

Lemma 5.11. Let ρ be a convex decreasing functional, H a FT -measurable

random variable and c > 0. Denoting by F : θ 7→ ρ(V c
T (θ)−H), we have:

i) F is convex;

ii) F is lower semicontinuous with respect to dtdP -a.s. convergence.

Proof. Follows by a convexity argument and by Fatou’s Lemma, exactly as

in chapter 3, Lemma 4.3.

The existence result is then an easy corollary:

Proposition 5.12. Let X be a continuous process satisfying Definition 5.1

and Assumption 1.10. If ρ is a convex decreasing functional, then the prob-

lem:

min
θ∈Ak

c

ρ (V c
T (θ)−H)

admits a solution.

Proof. Let θn ∈ Ak
c be a minimizing sequence. From Proposition 5.4 we

obtain a sequence ηn ∈ conv(θn, θn+1, . . . ) such that ηn → θ ∈ Ak
c c.a.s. By

the semicontinuity of ρ (Lemma 5.11), it follows that θ is a minimizer.

5.2.2 The quasi-left continuous case

We now come to the more general case where X is a quasi-left continuous

process on the whole interval [0, T ]. Note that this assumption implies the

continuity of X at T .

In this setting, arguments of duality between continuous functions and

signed measures cannot be applied directly to show that the portfolio value is

lower semicontinuous, as the discontinuities of X may be relevant for the limit

measure Dθ. A simple example is given by a limit strategy which changes

immediately after a jump has occurred. The idea of the next proof is that

if the jumps of X are totally inaccessible, then the cases where convergence

does not hold are negligible, as all strategies must be predictable.
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Proposition 5.13. If θn ∈ Ak
c , θn

t → θt c.a.s. and conv({‖Dθi‖T}i∈N) is

bounded in L0, then up to a subsequence:

V c
T (θ) ≥ lim sup

n→∞
V c

T (θn) for a.e. ω (5.2)

We break the proof of Proposition 5.13 into two lemmas:

Lemma 5.14. If Dθn ⇀ Dθ a.s., then we have:
∫

[0,T ]

Xs · d|Dθ|s ≤ lim inf
n→∞

∫

[0,T ]

Xs · d|Dθn|s for a.e. ω

In addition, if ‖Dθn‖T → ‖Dθ‖T a.s. (i.e. Dθn converges to Dθ in varia-

tion), then we obtain:
∫

[0,T ]

Xs · d|Dθ|s = lim
n→∞

∫

[0,T ]

Xs · d|Dθn|s for a.e. ω

Proof. By a change of variable, we have:
∫

[0,T ]

Xs · d|Dθ|s =

∫ ∞

0

|Dθ|T (X > x)dx

therefore it is sufficient to check that:

|Dθ|(X > x) ≤ lim inf
n→∞

|Dθn|(X > x) (5.3)

Of course, the problem here is that the set {X > x} is not necessarily open,

as X may have discontinuities. However, X has only totally inaccessible

jumps, therefore {∆X 6= 0} =
⋃

k[[σk]] a.s., where σk is a sequence of totally

inaccessible stopping times.

We denote by τk = inf{t ≥ σk : t > x}, and define recursively:

σ̃1 = σ1 A1 = [[σ1, τ1[[

σ̃k = σk

∣∣
{σk 6∈Ak−1} Ak = Ak−1 ∪ [[σk, τk[[

where τ
∣∣
A

= τ1A + ∞1Ω\A. It is easy to see that the set {σk 6∈ Ak−1} is

Fσk
-measurable, and hence σ̃k is a stopping time for all k.

Outside the random set A∞ =
⋃

k≥1 Ak, the process X is continuous,

therefore we can write

{X > x} =
⋃

k∈N
[[σ̃k, τk[[∪

⋃

k∈N
(αk, βk)
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where {αk}k∈N, {βk}k∈N are F -measurable random variables, and the union

is disjoint by construction of σ̃k and αk, βk (we stick to the convention that

[a, b) is empty if b ≤ a).

For each open interval (αk, βk), we obviously have:

|Dθ|(αk, βk) ≤ lim inf
n→∞

|Dθn|(αk, βk)

so it suffices to show that the same property holds for the stochastic intervals

[[σk, τk[[.

Up to a subsequence, we can assume that |Dθn| ⇀ µ, where µ ≥ |Dθ|.
We define the predictable process:

δt = lim inf
n→∞

|Dθn|(0, t)− µ(0, t)

Since we have that

µ[0, t] ≥ lim sup
n→∞

|Dθn|[0, t] ≥ lim inf
n→∞

|Dθn|(0, t) ≥ µ(0, t)

it follows that 0 ≤ δt ≤ µ{t} and hence δt > 0 for at most countably many t.

As a result (see Dellacherie and Meyer [DM78], Chapter IV, Theorem

88), {(t, ω) : δt > 0} =
⋃

k[[πk]], where {πk}k∈N is a sequence of predictable

stopping times. It follows that P (πj = σk) = 0 for all j, k, and hence

limn→∞ |Dθn|(]]0, σk[[) = µ(]]0, σk[[) a.s.

We have that:

µ(]]0, τk[[) ≤ lim inf
n→∞

|Dθn|(]]0, τk[[) = lim
n→∞

|Dθn|(]]0, σk[[)+lim inf
n→∞

|Dθn|([[σk, τk[[) =

= µ(]]0, σk[[) + lim inf
n→∞

|Dθn|([[σk, τk[[)

whence:

µ([[σk, τk[[) ≤ lim
n→∞

|Dθn|[[σk, τk[[

which completes the proof.

Lemma 5.15. If θn
t → θt c.a.s. and conv({‖Dθi‖T}i∈N) is bounded in L0,

then up to a subsequence (θn ·X)T converges in probability to (θ ·X)T .
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Proof. We have that:

(θn ·X)T = XT θn
T −X0θ

n
0+ −

∫

(0,T ]

XtdDθn
t =

= XT θn
T −X0θ

n
0+ −

∫

(0,T ]

Xtd(Dθn)+
t −

∫

(0,T ]

Xtd(Dθn)−t

where (Dθn)+ and (Dθn)− denote respectively the positive and negative parts

in the Hahn decomposition of Dθn. Up to subsequences, we can assume that

|Dθn|T converges a.s. and hence that (Dθn)+ ⇀ ν+ and (Dθn)− ⇀ ν−,

where ν+ and ν− are positive vector measures. Applying Lemma 5.14 to the

last two integrals above, we obtain that:

lim
n→∞

(θn ·X)T = XT θT −
∫

[0,T ]

Xtdν+
t −

∫

[0,T ]

Xtdν−t =

= XT θT −
∫

[0,T ]

XtdDθt = (θ ·X)T

Proof of Proposition 5.13. The thesis follows from Lemmas 5.9, 5.15 and

5.14.

As in the continuous case, the existence of minimizers is easily obtained:

Theorem 5.16. Let X be a quasi-left continuous process satisfying Defini-

tion 5.1 and Assumption 1.10. If ρ is a convex decreasing functional, then

the problem:

min
θ∈Ak

c

ρ (V c
T (θ)−H)

admits a solution.

Proof. As in Proposition 5.12, it follows from Proposition 5.4 and 5.13.

5.2.3 The semimartingale case

In the previous section, we have shown how the almost sure convergence of

integrands implies the convergence of elementary stochastic integrals. Since

the integrating process X was not necessarily a semimartingale, the general
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results of stochastic integration were not available, and we had to rely on the

basic properties of paths.

In particular, the proof of Lemma 5.15 needed the second part of 5.14,

through an integration by parts argument. In the case where X is a locally

integrable semimartingale, we can expect a simplification, and here we show

an alternative proof, based on standard stochastic integration theory.

This proof has a drawback, however. In fact, in the previous proof the

integrands θn only needed to converge almost surely in dtdP . By contrast,

the next proof needs the full result of Proposition 5.4, where convergence is

obtained in the (generally stronger) sense on Definition 5.2.

Lemma 5.17. Let X be a locally integrable semimartingale. If θn
t → θt

c.a.s. and conv({‖Dθi‖T}i∈N) is bounded in L0, then (θn ·X)T converges in

probability to (θ ·X)T .

Proof. With no loss of generality, we can assume that θn
t → 0 c.a.s. Let

X = M + A the Doob-Meyer decomposition of X. Since X is quasi left-

continuous, A has continuous paths. We have that:

|(θn ·X)t| ≤ |(θn · A)t|+ |(θn ·M)t|

and as in Proposition 5.10 we obtain that (θn · A) converges in probability

to zero. It remains to show that the same holds for (θn ·M).

Up to a sequence of convex combinations, we can assume that supn |Dθn|t =

Vt(ω) < ∞ a.s., and Vt is left-continuous. We have:

|(θn ·M)t| =
∣∣∣∣θn

t Mt −
∫

[0,t]

Msdθn
s

∣∣∣∣ ≤ 2|Dθn
t |M∗

t ≤ 2VtM
∗
t

Let ρk be a sequence of stopping times such that Mρk
t is integrable. Denoting

by σk = inf{t : Vt ≥ k} and τk = ρk ∧ σk, we obtain:

E
[|(θn ·M)τk

T |2
]

= E

[∫

[0,T∧τk]

|θn
s |2d〈M〉s

]

Since 〈M〉 is continuous, the measure d〈M〉 is diffuse, and for a.e. ω the

countable set {t : θn
t 6→ θt} is d〈M〉-negligible.
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Since |θn
s | ≤ Vτk

≤ k, by dominated convergence it follows that (θn ·
M)τk

T → 0 in L2, and hence in probability. Finally, we have that:

|(θn ·M)T | ≤|(θn ·M)T − (θn ·M)τk
T |+ |(θn ·M)τk

T | ≤
≤|Dθn|[τk ∧ T, T ]M∗

T + (|θn
τk
|+ |θn

T |)M∗
T + |(θn ·M)τk

T |
Since supn |Dθn|t ≤ Vt(ω), the first term in the right hand side can be made

arbitrarily small, uniformly in n. The other terms converge to zero as n →∞,

and the thesis follows.

5.3 Constrained problems

We now see how the results in the previous section can be extended so as to

allow for constraints on strategies. As in chapter 3, this generalization poses

no particular problems, as long as the constraints are closed, and remain

stable with respect to the transformations on minimizing strategies.

Since the relative compactness of minimizing sequences depends on the

key Lemma 5.6, we are able to consider closed convex constraints considered

in Chapter 3

The existence result for constrained problems can be formulated as fol-

lows:

Proposition 5.18. Let K be a convex constraint. Denoting by:

Ak
c (K) = {θt ∈ Ak

c : θ satisfies K}
If Ak

c (K) is not empty, then the minimum problem

min
θ∈Ak

c (m,M)
ρ (V c

T (θ)−H(θ))

admits a solution.

Proof. Analogous to that of Proposition 3.23.

5.4 Utility maximization

It is natural to embed the utility maximization problem in the framework of

Proposition 5.12 by choosing ρ(X) = E[−U(X)]. However, while conditions
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i) and ii) in Definition 1.14 clearly hold for any utility function U , the Fatou

property iii) is trivially satisfied only when U is bounded.

In the frictionless case, Kramkov and Schachermayer [KS99] have shown

that a solution to the utility maximization problem exists if and only if U

has reasonable asymptotic elasticity, defined as follows:

Definition 5.19. The asymptotic elasticity of an increasing concave func-

tion U is defined by:

AE+∞(U) = lim sup
x→∞

xU ′(x)

U(x)

and U has reasonable asymptotic elasticity if AE+∞(U) < 1.

In practice, for twice differentiable utility functions this condition is equiv-

alent to the requirement:

lim
x→+∞

−xU ′′(x)

U ′(x)
> 0 (5.4)

as it can be easily checked by a straightforward application of De L’Hôpital’s

rule. This condition has a clear economic interpretation, since −xU ′′(x)
U ′(x)

repre-

sents the relative risk aversion at the level of wealth x. Hence, (5.4) prescribes

that the agent keeps a certain positive relative risk aversion for arbitrarily

large levels of wealth.

In the case of transaction costs, existence of solutions can be established

under the same conditions:

Theorem 5.20. Let X be a quasi-left continuous process satisfying Defini-

tion 5.1 and Assumption 1.10. Let U : R+ 7→ R+ be an increasing and convex

function, with AE(U)+∞ < 1.

If maxθ∈Ak
c
E [U (V c

T (θ))] < ∞, then the utility maximization problem

max
θ∈Ak

c

E [U (V c
T (θ))] (5.5)

admits a solution.

The proof of this result can be obtained from its frictionless counterpart:

here we show how the proof of Schachermayer [Sch01b] can be easily adapted

to this setting.
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We need the following lemma:

Lemma 5.21 (Schachermayer, [Sch01b]). Let (fn)∞n=1 ≥ 0 be random

variables on (Ω,F , P ) converging a.s. to f0. Suppose that limn→∞ E [fn] =

E [f0] + α, for some α > 0. Then for all ε > 0 there exist n,m > ε−1 and

disjoint sets An, Am such that the following conditions are satisfied:

i) fn ≥ ε−1 on An and fm ≥ ε−1 on Am

ii) E [fn1An ] > α− ε and E [fm1Am ] > α− ε

iii) E
[
fn1Ω\(An∪Am)

]
> E [f0]− ε and E

[
fm1Ω\(An∪Am)

]
> E [f0]− ε

Proof of Theorem 5.20. Let θk be a maximizing sequence for (5.5). Since

AE+∞(U) < 1, by Lemma 6.3 in [KS99] there exists some β > 1 such that

U(x
2
) > β

2
U(x) for all x ≥ x0.

Since X is compact arbitrage free, by Proposition 5.4 we can assume up

to a sequence of convex combinations that θk → θ ∈ Ak
c a.s. in dtdP . By

Proposition 5.13, we have that:

V c
T (θ) ≥ lim sup

k→∞
V c

T (θk) a.s. in P

We need to show that limk→∞ E
[
U(V c

T (θk))
] ≤ E [U(V c

T (θ))]. By contradic-

tion, suppose that:

lim
n→∞

E [U(V c
T (θn))]− E [U(V c

T (θn))] = α > 0

Then, by Lemma 5.21 we could find n,m arbitrarily large and An, Am such

that:

E

[
U

(
V c

T (θn) + V c
T (θm)

2

)]
= E

[
U

(
V c

T (θn) + V c
T (θm)

2

)
1Ω\(An∪Am)

]
+

+ E

[
U

(
V c

T (θn) + V c
T (θm)

2

)
1An∪Am

]

By the condition AE+∞(U) < 1, for the second term we have:

E

[
U

(
V c

T (θn) + V c
T (θm)

2

)
1An∪Am

]
≥ βE

[
U(V c

T (θn) + V c
T (θm))

2
1An∪Am

]
≥

≥ β

2
(E [U (V c

T (θn)) 1An ] + E [U (V c
T (θm)) 1Am ]) ≥ β(α− ε)
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while for the first term:

E

[
U

(
V c

T (θn) + V c
T (θm)

2

)
1Ω\(An∪Am)

]
≥

≥ 1

2

(
E

[
U(V c

T (θn))1Ω\(An∪Am)

]
+ E

[
U(V c

T (θm))1Ω\(An∪Am)

]) ≥
≥ E [U(V c

T (θ))]− ε

and hence:

E

[
U

(
V c

T (θn) + V c
T (θm)

2

)]
≥ E [U(V c

T (θ))] + α + ((β − 1)α− ε(β + 1))

Since ε can be chosen arbitrarily small, we can assume that the last term

in the right is positive, but this leads to a contradiction, since V c
T (θn) was

a maximizing sequence, and limn→∞ E [U(Xn)] = E [U(V c
T (θ))] + α was the

supremum.

5.5 The edge of the no-arbitrage condition

The next counterexample shows that the compactness result of Proposition

5.4 does not hold when γ = k, despite the market remains arbitrage free.

Example 5.22. Let Rt be a Brownian Motion started in 1 and reflected be-

tween 1
1+ε

and 1
1−ε

, and denote Xt = R t
T−t

.

Note that 1 − ε ≤ 1
Xt

≤ 1 + ε, and by Proposition 2.2 the asset X

is arbitrage-free for k ≥ ε (since X̃t ≡ 1 is obviously a martingale under

Q = P ).

Consider the stopping times {τi}i≥1 and {σi}i≥0 defined as follows:




σ0 = 0

τi+1 = inf{s > σi : Xs = 1
1+ε
}

σi = inf{s > τi : Xs = 1
1−ε
}

and the strategy θ defined by:

θt =





0 for t ∈ (σk, τk+1]

δ for t ∈ (τk, σk]
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Note that by construction σi, τi < ∞ a.s. for all i.

Consider constant proportional transaction costs kt = k. For k = ε, it is

easy to see that V c
t (θ) ∈ [c − δ k

1+ε
, c + δ k

1−ε
], and hence θ is admissible for

some small δ > 0. Also, |Dθ|σi
= 2δi, hence |Dθ|T = ∞ a.s.

Defining θn = θσn (that is, θ stopped at σn), we obtain that {|Dθn|T}n =

{2δn}n is not bounded in L0, therefore the assumptions of Lemma 5.6 are

not satisfied. Also, all sequences of convex combinations of θn converge to θ

a.s., hence there is no hope that one of them converges to a function of finite

variation.

In practice, the asset X in the above example allows a trivial arbitrage

strategy: buy at 1
1+ε

, sell at 1
1−ε

. However, with transaction costs, this

strategy remains an arbitrage depending on the cost size: for k < ε, it

still yields a profit, while for k > ε it leads to a net loss (hence θ is not

admissible). At the critical value k = ε, the trading gain is exactly offset

by the transaction cost, and the portfolio value remains bounded though the

trading strategy becomes more and more hectic as t → T .

5.6 Intertemporal Problems

In this chapter we prove the existence of solutions to intertemporal optimiza-

tion problems with market frictions.

The main difference from the fixed horizon case is the presence in this

setting of consumption as an additional control variable. However, such

difference is rather irrelevant in terms of technical difficulties, as cumulative

consumption is modeled as an increasing process Ct, hence of finite variation.

This fact, together with the observation that consumption is bounded by the

budget constraint, allows to employ in the space of consumption plans exactly

the same compactness tools developed for trading strategies. This means

that the results in this setting are almost straightforward consequences of

those established in the fixed horizon case, although the underlying economic

problems are very different.

Definition 5.23. For any c, k > 0, we define the space of admissible con-
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sumption/investment plans as:

Rk
c = {(θ, C) : θ ∈ Ak

c , C ∈ C, V c
T (θ, C) ≥ 0}

Proposition 5.24. Let X be a quasi-left continuous process satisfying As-

sumption 1.10 and Definition 5.1. If ρ is an intertemporal convex decreasing

functional, then the problem:

min
(θ,C)∈Rk

c

ρ (C)

admits a solution.

Proof. Let (θn, Cn) a minimizing sequence. By Proposition 5.4, up to a

sequence of convex combinations we can assume that θn converges a.s. in

dtdP to some finite-variation predictable finite process θ.

Also, by the budget constraint VT (θ, C) ≥ 0 we have:

CT ≤ c + (θ ·X)t −
∫

[0,t]

ksXs · d|Dθ|s − ktXt · |θt|

By the assumption that X is γ-arbitrage free, it follows that the right-hand

side is bounded in L0, uniformly in θ. As a result, for any minimizing se-

quence Cn we have that {Cn
T}n is bounded in L0. Hence, in the same fashion

as in Lemma 5.6 (or simply applying Lemma 4.2 in [Kra96]), we obtain, up

to a sequence of convex combinations, that Cn converges a.s. in dtdP to

some C ∈ C.

It only remains to prove that the strategy (θ, C) is optimal and satisfies

the budget constraint. For the latter, we note that:

Vt(θ, C) = Vt(θ)− Ct

The first term in the right-hand side is upper semicontinuous by Lemma 3.8.

The consumption term must be lower semicontinuous, since a.s. convergence

of Cn
t readily implies the weak star convergence of the measures dCn. As a

result, the whole quantity Vt(θ, C) is upper semicontinuous, and the budget

constraints is preserved in the limit.

The proof is complete observing that, by the convexity of ρ, convex com-

binations of minimizing sequences are themselves minimizing, and the Fatou

property of ρ guarantees the optimality of the limit (θ, C).



5.6 Intertemporal Problems 73

Example 5.25 (Hindy-Huang-Kreps [HHK92] preferences). These preferences

are obtained by risk-functionals of the form:

ρ(C) = −E

[∫

[0,T ]

U(t, Yt(C))dt

]

where U : [0, T ] × R 7→ R is a continuous function, increasing and strictly

concave in the second argument. The function U measures the “felicity” of

the agent at time t, taking into account present as well as past consumption

through the habit formation function Yt, defined as follows:

Yt(C) = ηe−βt +

∫

[0,T ]

βe−β(t−s)dCs

The parameters η, β > 0 represent respectively the initial level of satisfaction,

and the time decay of past consumption as factor of current satisfaction. Note

that for η = 0 and in the limit β →∞ we obtain Yt(C) = Ct.

Remark 5.26. The most classical case in microeconomics is probably that

of time-additive preferences, used among others by Merton [Mer69]. In this

case, the risk functional takes the following form:

ρ(C) = −E

[∫

[0,T ]

e−rtU(C ′
t)dt + B(CT )

]

where r is an impatience factor, U a utility function depending on the local

consumption rate C ′
t and B a bequest valuation function depending on the

final consumption gulp CT .

In this case, the functional is defined only on absolute continuous con-

sumption plans. This means that our result cannot be directly applied to

this setting, as it provides a candidate optimal consuption plan which does

not necessarily belong to this class.
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5.7 Notes

The problems addressed in this chapter have recently been studied by several

authors, under different model assumptions.

Kamizono [Kam01] has obtained existence results for hedging problems

under transaction costs in the continuous semimartingale case, within the

framework introduced by Kabanov et al. [KRS01]. In the same setting, he

has proved the existence of solutions for utility maximization problems, both

from terminal wealth and from intertemporal consumption.

Utility maximization problems under transaction costs have also been

studied by Deelstra, Pham and Touzi [DPT00] in the general semimartingale

case, with a particular attention to the case of nonsmooth utility functions,

which requires the use of nonsmooth convex analysis tools.



Appendix A

We recall here a few results in functional analysis and stochastic integration

that we use in the main text. Here T denotes a generic stopping time.

This result dates back to Banach, and is well-known:

Theorem A.1. Let xn be a relatively weakly compact sequence in a Ba-

nach space V . Then there exists a sequence of convex combinations yn =∑∞
i=n αn

i xn such that yn converges in the norm topology of V .

Bounded sets are relatively compact in Lp spaces for p > 1. For L1 this

is not the case, since its weak star closure leads to the space of Radon mea-

sures. Nonetheless, relative compactness can be recovered through convex

combinations, as shown by the following:

Theorem A.2 (Komlós). Let Xn be a sequence of random variables, such

that supn E|Xn| < ∞. Then there exists a subsequence X ′
n and a random

variable X ∈ L1 such that, for each subsequence X ′′
n of X ′

n,

1

n

n∑
i=1

X ′′
n → X a.s.

The next type of results states when a sequence of stochastic integrals

converges to a stochastic integral. Again, the situation is different for p > 1

and p = 1. The first case is a classic result of stochastic integration, and

dates back to Kunita-Watanabe for p = 2:

Theorem A.3 (Kunita-Watanabe). Let X be a continuous local mar-

tingale, θn a sequence of X-integrable predictable stochastic processes such
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that each
∫ t

0
θn

s dXs is a Lp-bounded martingale, and such that the sequence∫∞
0

θn
s dXs converges to a random variable G in the norm topology of Lp.

Then there is an FX-predictable stochastic process θ such that
∫ t

0
θsdXs

is an Lp-bounded martingale, and such that
∫ t

0
θsdXs = G.

The case p = 1 is due to Yor [Yor78]:

Theorem A.4 (Yor). Let X be a continuous local martingale, θn a sequence

of X-integrable predictable stochastic processes such that each
∫ t

0
θn

s dXs is a

uniformly integrable martingale, and such that the sequence
∫∞

0
θn

s dXs con-

verges to a random variable G in the norm topology of L1 (or even in the

σ(L1, L∞) topology).

Then there is an FX-predictable stochastic process θ such that
∫ t

0
θsdXs

is a uniformly integrable martingale, and such that
∫ t

0
θsdXs = G.

The main difference between p > 1 and p = 1 is that in the latter case

the norms Lp : M 7→ E [Mp
∞] and Hp : M 7→ 〈M〉

p
2∞ are no longer equivalent.

Yor’s idea is to reduce the L1 case to H1 by stopping arguments.

In fact, Theorem A.4 is a consequence of a more general result (see Yor

[Yor78], Theorem 2.4 page 277), which gives further information on converg-

ing sequences of uniformly integrable martingales. We report this result with

its proof, and an easy corollary used in this paper.

Note that a different proof of A.4 can be found in Delbaen and Schacher-

mayer [DS99], with an excellent exposition of the properties of the space

H1.

Theorem A.5 (Yor). Let A be a set of uniformly integrable martingales,

and denote

Φ(A) = {Y T : Y ∈ A, Y T ∈ H1}
Let Y be a uniformly integrable martingale, Y n ∈ A and Y n → Y in L1

(or even weakly in σ(L1, L∞)). Then, for all stopping times T such that

Y T ∈ H1, we have that Y T belongs to the closure of Φ(A) in the weak topology

σ(H1, BMO).

Proof. We separate the proof into three steps.

Step 1: we first show that if the theorem holds for Y ∈ H1 and

T = ∞, then it holds in general. If Y n ⇀ Y in σ(L1, L∞), then (Y n)T ⇀ Y T ,
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and we can apply the theorem to (Y n)T , Y T (since Y T ∈ H1 by assumption)

obtaining that Y T belongs to the closure of Φ({(Y n)T}n), which is smaller

than Φ(A).

Step 2: we further reduce the proof to the case of Y n ∈ H1. For all n,

there exists a sequence of stopping times Sn
k → ∞ such that (Y n)Sn

k ∈ H1.

Denoting by Zn = (Y n)Sn
k , by martingale convergence there exists some

k = kn such that ‖Y n
∞ − Zn

∞‖L1 = ‖Y n
∞ − E [Y n

∞| FSn
k

] ‖L1 ≤ 1
n
. Therefore,

Zn ∈ H1 for all n, and we have, for all g ∈ L∞:

|E [(Zn
∞ − Y∞)g] | ≤ ‖Zn

∞ − Y n
∞‖L1‖g‖L∞ + |E [(Y n

∞ − Y∞)g] |

therefore Zn
∞ converges weakly in σ(L1, L∞) to Y∞. Also, the set Φ({Zn}n)

is smaller then Φ(A).

Step 3: we now give the proof under the assumptions Y n, Y ∈ H1, T = ∞.

It is sufficient to show, for any finite subset (U1, . . . , Ud) ∈ BMO, that there

exists some stopping time T such that:

|E [
[(Y n)T − Y, U i]∞

] | < ε for all i

We take T = inf{t :
∑d

i=1 |U i| ≥ k}, choosing k such that:

E

[∫

(T,∞]

|d[Y, U i]s|
]

<
ε

2
for all i

which is always possible by the Fefferman inequality, since [Y, U i] has inte-

grable variation, Y ∈ H1, and U i ∈ BMO. Therefore it remains to show

that, for some fixed T , and for all i = 1, . . . , d:

lim
n→∞

E
[
[(Y n)T , U i]∞

]
= lim

n→∞
E

[
[Y n, (U i)T ]∞

]
= E

[
[Y, (U i)T ]∞

]

U i is bounded in [0, T ), but it belongs to BMO, it has bounded jumps,

hence it is also bounded on [0, T ]. As a result, (U i)T is bounded. The local

martingale [Y n, (U i)T ]−Y n(U i)T hence belongs to the class D, and we have:

E
[
[Y n, (U i)T ]∞

]
= E

[
Y n
∞U i

T

]
and E

[
[Y, (U i)T ]∞

]
= E

[
Y∞U i

T

]

Finally, U i
T ∈ L∞, and the thesis follows from the assumption Y n ⇀ Y in

σ(L1, L∞).
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Remark A.6. The statement of Theorem A.5 with A = {Y n}n says that,

for any Y τ ∈ H1, there exists a sequence of indices nk, and a sequence of

stopping times τk such that Y τk
nk

⇀ Y τ in σ(H1, BMO). However, a priori

the sequence nk may not tend to infinity, and the the stopping times τk may

not converge almost surely to τ .

The proof provides more information on these issues. For the first, note

that in fact nk = k. For the latter, let us look more closely to the three steps.

Step 1 simply shows that τk may be chosen such that τk ≤ τ a.s.

In Step 2, we have Sn
k →∞, and kn must be sufficiently high. Therefore

we can replace it with some higher kn such that the condition P (Sn
kn

< n) < 1
n

is satisfied as well.

Likewise, in Step 3 the stopping time T needs to be sufficiently high,

hence it may be chosen to satisfy the condition P (T < n) < 1
n
. By a diago-

nalization argument, we can select a sequence (Y n)Tn such that (Y n)Tn ⇀ Y

in σ(H1, BMO), and Tn →∞ a.s.

The previous Remark provides the following:

Corollary A.7. If Y n ⇀ Y in σ(L1, L∞), and Y τ ∈ H1 for some stopping

time τ , then there exists a subsequence nk and a sequence of stopping times

τk → τ a.s. such that (Y nk)τk ⇀ Y τ in σ(H1, BMO).
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[CK96] J. Cvitanić and I. Karatzas, Hedging and portfolio optimization

under transaction costs: a martingale approach, Math. Finance 6

(1996), no. 2, 133–165.
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C. Stricker, Inégalités de normes avec poids et fermeture d’un es-
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