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Abstract. We investigate the existence of a drag-minimizing shape for two classes of
optimal-design problem of fluid mechanics, namely the vector Burgers equations and the
Navier-Stokes equations. It is known that the two-dimensional Navier-Stokes problem
of shape optimization has a solution in any class of domains with at most l holes. We
show, for the Burgers equation in three dimensions, that the existence of a minimizer
still holds in the classes Oc,r(C) and Ww(C) introduced by Bucur and Zolésio. These
classes are defined by means of capacitary constraints at the boundary. For the 3D
Navier-Stokes equations we prove some results of existence of drag-minimizing shape,
under additional assumptions on the class of domains to be considered. We also discuss
how these assumptions critically depend on the definition of weak solutions for Navier-
Stokes equations and, more specifically, on the characterization of the spaces in which it
is possible to prove the uniqueness for the linear Stokes problem.
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1 Introduction

In this paper we study the so called “submarine problem” and related problems: suppose
that a body K, with given volume, is moving with velocity independent of time in an
incompressible viscous fluid. It is well-known that the velocity u(x) of the fluid, with
respect to the body, can be found as the solution to the stationary Navier-Stokes equations:

{
−ν∆uΩ + (uΩ · ∇)uΩ +∇p = f

∇ · uΩ = 0
in Ω (NS)

with boundary conditions




uΩ = 0 on ∂K,

uΩ = u∞ on ∂C,
(1)

where u∞ is a constant vector. Here C ⊂ R3 is an open set, K ⊂ C is a compact set,
Ω = C \K, and, for simplicity, we assume that C contains the origin of R3 and that it
is contained in a cube of side 2a. The term f represents an external force, as gravity for
example. Recall that the vector u : Ω → R3 is the velocity, the scalar p : Ω → R is the
pressure, while the constant ν > 0 is the kinematic viscosity.

Provided that (NS) admits a unique weak solution uΩ ∈ H1(Ω;R3), (in the sequel we
use the customary vector-valued Sobolev spaces, see Adams [1]) the resistance of K can be
written in terms of uΩ (see Section 3.1), so we can define a shape-functional Ω −→ J(uΩ).
The first issue addressed in this paper is the following: under which assumptions does an
optimal shape exists?

A standard approach to prove existence of minima is the “Direct Method of the Cal-
culus of Variations”: if we find a topology (or a convergence) such that:

i) the class of domains is a compact set;

ii) the functional is lower semicontinuous;

then, we have a minimum.
In our case the resistance functional J turns out to be a lower semicontinuous func-

tional with respect to the weak convergence in the Sobolev space H1(Ω;R3). This means
that the above condition ii) is satisfied if we choose a convergence such that: Ωj → Ω
implies uΩj

⇀ uΩ. Indeed, it can be shown that if solutions converge weakly in H1(Ω;R3),
then they also converge strongly.

In dimension two, the optimal shape problem for the Navier-Stokes equations has been
solved by S̆verák [16], who proved the existence of an optimum in the class Ol(C), defined
as follows:

Ol(C) = {Ω ⊂ C : #(C \ Ω) ≤ l} ,

where # denotes the number of connected components, and l is a positive integer.
The class Ol(C) is endowed with the complementary Hausdorff topology, that guar-

antees the class itself to be compact. Then in [16] it is proved that Hausdorff convergence



of two-dimensional domains in Ol(C) implies strong convergence of the solutions both of
(NS) and of the elliptic equation −∆uΩ = f with Dirichlet boundary data.

In higher dimensions, the results are substantially different. Indeed, S̆verák himself
observed that there are sequences of domains in Ol(C), converging in the Hausdorff topol-
ogy, for which the corresponding solutions do not converge to the solution of the problem
in the limiting domain (for an example, see Cioranescu and Murat [5]). The reason is,
roughly speaking, the following: in two dimensions the connected components condition
enforces a upper bound on capacity. On the contrary, this link vanishes in three or more
dimensions.

In this spirit, Bucur and Zolésio [3, 4] exhibited other classes of n-dimensional domains
satisfying the above conditions i) and ii) with respect to the Hausdorff topology, for a broad
range of functionals and state equations. In reference [3] Bucur and Zolésio introduced
the class Oc,r(C) (for the precise definition, see Section 1.2). Using techniques coming
from potential theory, they proved that Oc,r(C) is closed in the Hausdorff topology, and

that Ωj
Hc−→ Ω implies uΩj

→ uΩ in the strong topology of H1
0(C). This guarantees

the convergence of solutions for the equation −∆uΩ = f , and therefore the existence of
extrema for several shape functionals.

In [4] Bucur and Zolésio weakened the capacitary constraint in the definition of
Oc,r(C), and generalized their previous results to a larger class of domains, Ww(C), which
is defined by a Wiener-type condition at the boundary.

In this paper, we discuss whether in three dimensions the problem (NS) admits a
resistance-minimizing shape in the classes Oc,r(C) and Ww(C). In Section 2, we start
by studying the nonlinear elliptic problem of the vector Burgers equations, for which we
prove the existence of an optimum, as in the case of the Laplace equation. In Section 3 we
investigate the problem for the Navier-Stokes equations. It turns out that an important
role is played by the definition of weak solution for (NS). Indeed, (at least) two different
definitions are available: we show the existence of an optimal shape for classes of domains
where these two definitions coincide. In its full generality, the problem remains open, and
it seems to be strictly connected to a long-dated uniqueness question in fluid-dynamics,
discussed in Section 4.

1.1 Hausdorff convergence

In this section we recall a few basic facts on Hausdorff convergence that we shall use in
the sequel.

Definition 1.1. On the class O = {Ω open set : Ω ⊂ C}, where C is a bounded set, we
define the Hausdorff complementary metric

ρ(Ω1, Ω2) = sup
x∈C

|dΩ1(x)− dΩ2(x)| ∀Ω1, Ω2 ∈ O,

where dΩ(x) = dist(x, C \ Ω).

Let Ωn, Ω be open sets. We denote by Ωn
Hc−→ Ω the convergence in the Hausdorff

complementary topology.



Proposition 1.2. For a given A ∈ O, we denote by Aε the following set Aε = {x ∈ A :
dist(x, C \ A) > ε}. Then, the following conditions are equivalent:

a) Ωn
Hc−→ Ω;

b) ∀ ε > 0 ∃nε such that Ωn ⊃ Ωε, ∀n ≥ nε; furthermore, ∀ ε > 0 ∃nε such that
Ωε

n ⊂ Ω, ∀n ≥ nε.

Remark 1.3. Condition b) implies that if Ωn
Hc−→ Ω then, for each compact K, it even-

tually holds Ωn ⊃ K.

An important property of the Hausdorff convergence is the following.

Proposition 1.4. Let C be a bounded set. Then the class of open sets O is compact with
respect to the Hausdorff convergence.

1.2 Compactness results for Oc,r(C) and Ww(C)

In this section we recall the main results of [3, 4]. In particular we give some definitions
and the basic compactness results used to prove the existence of the shape minimizer.

Definition 1.5. An open set Ω has the (r, c)-capacity density condition if:

∀x ∈ ∂Ω
C(Ωc ∩Br(x), B2r(x))

C(Br(x), B2r(x))
≥ c,

where Br(x) is the ball (open or closed is equivalent, see [3]) centered at x and with radius
r. Moreover C(A,B) denotes the capacity of A with respect to B. We define the following
spaces:

Oc,r(C) = {Ω ⊂ C : ∀ r0, 0 < r0 < r, Ω has the (r0, c)-capacity density condition}
where r < 1, and

Ww(C) = {Ω ⊂ C : ∀x ∈ ∂Ω ∀ r, R, 0 < r < R < 1,
∫ R

r

(
C(Ωc ∩Br(x), B2r(x))

C(Br(x), B2r(x))

)
dt

t
≥ w(r, R, x)}

where w : (0, 1)× (0, 1)× C → R+ is such that:

1) w is lower semicontinuous in x;

2) limr→0 w(r,R, x) = ∞, locally uniformly on x.

Remark 1.6. If Ω ∈ Oc,r(C) then we have Ω ∈ Ww(C). In fact, this can be seen by
choosing w(r′, R, x) = K(r′, R) − c log r′, where K is a continuous function, increasing
in R, and decreasing in r′. This means that Oc,r(C) is, in fact, a particular subclass of
Ww(C).

The following results are proved in [3, 4]:

Theorem 1.7. Let Ωn ∈ Oc,r(C) (respectively Ww(C)) be a sequence of open sets, such

that Ωn
Hc−→ Ω. Then Ω ∈ Oc,r(C) (respectively Ww(C)).



2 The Burgers equation

In this section we consider the vector Burgers equations, which are simple, prototype
equations. Basically, they are the Navier-Stokes equations without the complication of
a pressure gradient and of the isochoricity constraint. The one dimensional Burgers
equation was initially proposed as a turbulence model; the multi-dimensional case was
studied (in the non-stationary case) among the others by Kiselev and Ladyžhenskaya [9]
in their fundamental paper on the existence and uniqueness of solutions for incompressible
fluids, showing the difference between nonlinear parabolic systems based on the Laplace
operator versus those based on the Stokes operator. For a survey of results and references
on Burgers equations, see Heywood [8].

2.1 Existence and Uniqueness Theorem

In this section we show an existence and uniqueness result for the Burgers equations.
To the authors knowledge, in the literature there are no such a kind of results for weak
solution to the stationary Burgers (B) equations, especially if we consider the problem
with nonzero boundary data. Hence, Theorem 2.2 below may be interesting by itself.
We remark that the existence of solutions, for any viscosity (and in arbitrary domains),
remains an open problem.

We consider the vector Burger equation, namely the following system of partial dif-
ferential equations, for the unknown uΩ : Ω → R3.

−ν∆uΩ + (uΩ · ∇) uΩ = f, (B)

again with the boundary conditions (1) and we consider it as the trace on Ω := C\K of
g which is a smooth vector valued function, belonging at least to H1 := H1(Ω;R3).

We introduce the variational formulation of the Burgers equations, where H1
0 =

H1
0 (Ω;R3),

find w ∈ H1
0 : a(w, v) = (f, v)− a(g, v) ∀ v ∈ H1

0 , (2)

a(w, v) := ν

∫

Ω

∇w∇v dx +

∫

Ω

(w · ∇) w v dx,

and the dependence on Ω of w is not written explicitly.
We recall that ∫

Ω

∇w∇v dx =
3∑

i,j=1

∫

Ω

∂wi

∂xj

∂vi

∂xj

dx,

while ∫

Ω

(w · ∇) w v dx =
3∑

i,j=1

∫

Ω

wj
∂wi

∂xj

vi dx.

The solution uΩ of (B) is finally defined by uΩ = w + g.
To construct a solution we introduce, given a function W ∈ H1

0 , the following bilinear
form

aW (w, v) := ν

∫

Ω

∇w∇v dx +

∫

Ω

(W · ∇) w v dx.



Let us show that, for W small enough, it is coercive in H1
0 (its continuity is straightfor-

ward). Let us consider the following expression

aW (w,w) = ν‖∇w‖2 +

∫

Ω

(W · ∇) w w dx = ν‖∇w‖2 − 1

2

∫

Ω

divW |w|2 dx,

where ‖ . ‖ denotes the (L2(Ω))3 norm.
We now recall the so-called Ladyžhenskaya estimate

‖u‖L4(Ω) ≤
√

2‖u‖1/4‖∇u‖3/4 ∀u ∈ H1
0 (Ω), (3)

that is independent of Ω. This estimate, which is a particular case of some Gagliardo-
Nirenberg inequalities, is of fundamental importance in the mathematical theory of in-
compressible viscous fluids (see Lemma 1 in the classical Ladyžhenskaya’s book [10]). We
also recall the Poincaré estimate, that implies

‖u‖2 ≤ 4a2‖∇u‖2 ∀u ∈ H1
0 (Ω), (4)

for any open set Ω contained in a cube of side 2a, see Nečas [15].
By using the above two inequalities we have

∣∣∣∣
∫

Ω

divW |w|2 dx

∣∣∣∣ ≤ ‖∇W‖ ‖w‖2
L4 ≤ 2‖∇W‖ ‖w‖1/2‖∇w‖3/2

≤ 2(2a)1/2‖∇W‖ ‖∇w‖2.

Finally, we obtain that

aW (w,w) ≥ ν

2
‖∇w‖2,

provided that

‖∇W‖ ≤ ν

4(2a)1/2
. (5)

We can now apply the classical Lax-Milgram lemma to state the following result.

Lemma 2.1. Let be given W ∈ H1
0 that satisfies (5). Then, there exists a unique solution

to the variational problem

find w ∈ H1
0 : aW (w, v) = (f, v)− a(g, v) ∀ v ∈ H1

0 .

Let us try to find an a priori estimate on the solution w. We have

ν

2
‖∇w‖2 ≤ |aW (w,w)| = |(f, w)− a(g, w)| ≤

≤ ‖f‖ ‖w‖+ ν‖∇g‖ ‖∇w‖+ ‖g‖L4‖∇g‖ ‖w‖L4

≤ 2a‖f‖ ‖∇w‖+ ν‖∇g‖ ‖∇w‖+ 2(2a)1/2‖∇g‖2 ‖∇w‖



Finally, by using several times the Young inequality we have:

ν

4
‖∇w‖2 ≤ 3ν‖∇g‖2 +

24a

ν
‖∇g‖4 +

12a2

ν
‖f‖2

and hence

‖∇w‖2 ≤ 4

ν

(
3ν‖∇g‖2 +

24a

ν
‖∇g‖4 +

12a2

ν
‖f‖2

)
def
= Φ(ν, a, g, f). (6)

Then, if
4

ν

(
3ν‖∇g‖2 +

48a2

ν
‖∇g‖4 +

6a

ν
‖f‖2

)
≤ ν2

32a

the map T : W → w maps a ball of H1
0 into itself.

Let us show that, under suitable hypotheses the map T is a contraction. Consequently,
its fixed point will be the unique solution of (2). We consider w1, w2 solution of the linear
problem corresponding to the bilinear forms aW1(w, v) and aW2(w, v), respectively, We
subtract the equation satisfied by w2 to that one satisfied by w1, we multiply it by w1−w2,
and we integrate over Ω to obtain

ν‖∇(w1 − w2)‖2 =

∫

Ω

[(W1 · ∇) w1 − (W2 · ∇) w2] (w1 − w2) dx =

=

∫

Ω

W1∇(w1 − w2)
2

2
dx +

∫

Ω

((W1 −W2) · ∇) w2(w1 − w2) dx.

The first integral on the right hand side can be estimated (recall (3)-(4)) as follows
∣∣∣∣
∫

Ω

W1 · ∇(w1 − w2)
2

2
dx

∣∣∣∣ ≤
1

2

∫

Ω

|∇ ·W1| |w1 − w2|2 dx

≤ (2a)1/2‖∇W1‖ ‖∇(w1 − w2)‖2,

while the second∣∣∣∣
∫

Ω

((W1 −W2) · ∇) w2(w1 − w2) dx

∣∣∣∣ ≤

≤ 2(2a)1/2‖∇(W1 −W2)‖ ‖∇w2‖ ‖∇(w1 − w2)‖.
We have then

ν

2
‖∇(w1 − w2)‖2 ≤ 2(2a)1/2‖∇(W1 −W2)‖ ‖∇w2‖ ‖∇(w1 − w2)‖

and by recalling (6) we infer that there exists ν0(g, f, a) such that for ν > ν0 the map T
is a strict contraction, the constant ν0 being defined by the relation

4(2a)1/2

ν0

Φ(ν0, a, g, f) = 1. (7)

We have finally proved the following result.



Theorem 2.2. Let be given ν > ν0, where ν0 is defined by condition (7), then the Burgers
equations (B) admit a unique solution uΩ ∈ H1.

Remark 2.3. Theorem 2.2 shows the existence and uniqueness of solutions in a particular
bounded set of H1. The bound depends on the data ν, f, g. Then, it is an existence and
uniqueness result for “small” data. Probably, by using different techniques, it is possible
to prove an existence (but very unlikely a uniqueness) result for arbitrary ν. We preferred
to use the above tokens since in the sequel we will need the uniqueness and we obtained
both results just with elementary techniques.

2.2 The drag

In problem (B), the object K moves in under the action of an external field f . Therefore,
the flow is going to be stationary only if a force G(K, uK) balances the friction and the
field f . In other words, we set:

G(K, uΩ) = −ν

∫

∂K

∂uΩ

∂n̂
ds−

∫

K

f dx,

where n̂ is the inward normal to ∂K. Note that the functional depends only on K, since
Ω = C\K and the solution uΩ is determined uniquely by the data of the problem.

We set

û∞ =





0 in C

u∞ in R3\C
and we define U∞ = φ û∞, where φ ∈ C∞

0 (R3), with 0 ≤ φ ≤ 1 and

φ =





1 in Bb(0)

0 in R3\B2b(0)

for a sufficiently big b > 0, such that Ω ⊂ Bb(0) (the ball of radius b, centered in the
origin). In this way uΩ − U∞ ∈ H1

0 .
If we multiply (B) by uΩ − U∞ and we integrate over Ω we obtain that

−ν

∫

Ω

∆uΩ (uΩ − U∞) dx = ν

∫

Ω

|∇uΩ|2 dx + ν

∫

∂K

∂uΩ

∂n̂
u∞ ds, (8)

where n̂ is the outward unit vector. Furthermore,

∫

Ω

(uΩ · ∇) uΩ (uΩ − U∞) dx =
1

2

∫

Ω

uΩ · ∇|uΩ − U∞|2 dx

= −1

2

∫

Ω

(∇ · uΩ) |uΩ − U∞|2 dx +
1

2

∫

∂Ω

uΩ · n̂ |uΩ − U∞|2 ds



and, since uΩ vanishes on ∂K and equals u∞ on ∂C, we have that

∫

Ω

(uΩ · ∇) uΩ (uΩ − U∞) dx = −1

2

∫

Ω

(∇ · uΩ)|uΩ|2 dx. (9)

Finally, by adding up these expressions we obtain

−ν

∫

∂K

∂uΩ

∂n̂
u∞ dx = ν

∫

Ω

|∇uΩ|2 − 1

2

∫

Ω

(∇ · uΩ) |uΩ|2 dx−
∫

Ω

fuΩ dx.

The power is then given by the functional F (K) = F (K,uΩ):

F (K) = G(K)u∞ =

= ν

∫

Ω

|∇uΩ|2 dx− 1

2

∫

Ω

(∇ · uΩ)|uΩ|2 dx−
∫

Ω

fuΩ dx−
∫

K

fu∞ dx.

(10)

2.3 Existence of an optimal shape

We are now ready to prove the existence of a resistance-minimizing shape in the classes
Oc,r(C) and Ww(C).

Lemma 2.4. Let {Kh} ⊂ C be a sequence of compact sets such that Ωh = C \ Kh ∈
Ww(C), Ωh

Hc−→ Ω, and let uΩh
∈ H1 be solutions of (B) in Ωh. Then we have uΩh

⇀ uΩ,
where uΩ is a H1 solution in Ω of (B).

Proof. Since the sequence {uΩh
} is uniformly bounded in the H1

0(C) norm, up to a sub-
sequence, {uΩh

} weakly converges to some function u. We need to see that u is a weak
solution of (B) on Ω. By assumption we have:

∫

C

ν∇uΩh
∇ϕdx +

∫

C

(uΩh
· ∇)uΩh

ϕ dx−
∫

C

fϕ dx = 0 ∀ϕ ∈ H1
0 (C) (11)

The weak convergence of uΩh
immediately implies that the first term passes to the limit.

To see that also the second does, we write explicitly

∫

C

[(uΩh
· ∇)uΩh

− (u · ∇)u] ϕdx =

=

∫

C

[(uΩh
· ∇)uΩh

− uΩh
∇u] ϕdx +

∫

C

[uΩh
∇u− (v · ∇)v] ϕdx =

=

∫

C

uΩh
∇(uΩh

− u) ϕdx +

∫

C

(uΩh
− u)∇uϕdx

and observe that the last two terms vanish as h →∞, thanks to the compactness of the
embedding H1

0 ⊂ Lp, for 2 ≤ p < 6. This implies that u = uΩ and satisfies equation (11).

The main existence theorem is stated as follows.



Theorem 2.5. Let C be an open set, and B ⊂ C a bounded open subset. Let f ∈
L2(C;R3), and ν as in Theorem 2.2. Then, for every γ > 0 the functional F (K), defined
in (10), has at least one minimizer in the class:

Kγ,w = {K ⊂ B : meas(K) ≥ γ, C \K ∈ Ww(C)}.

Proof. Let Kh ∈ Kγ,w be a minimizing sequence for F . We set Ωh = C \Kh and denote
by uΩh

the solution to (B) in Ωh such that F (Kh) = F (Kh, uΩh
). Since {Ωh} is a bounded

sequence of open sets, we can extract a subsequence which converges to some set Ω in the
Hausdorff complementary topology. By Theorem 1.7 we have that Ω ∈ Ww(C) and, by
Lemma 2.4, uΩh

converges weakly to uΩ, a solution to (B) in Ω.
Since F is weakly lower semicontinuous, we have:

lim inf
h→∞

F (Kh, uΩh
) ≥ F (K, uΩ)

and the proof is complete.

3 The Navier-Stokes Equations

In this section we consider the real problem related to the Navier-Stokes equations (NS),
with the boundary conditions (1). By recalling the Stokes paradox, if n = 2 and C
is unbounded, then a solution exists only if u∞ is identically zero (see for instance
Ladyžhenskaya [10] or Galdi [6]). This means that in two dimensions it is meaning-
less to take C = R2, with the condition uΩ → u∞ at infinity. In higher dimension this is
no longer the case, and C may represent the whole space as well.

Definition 3.1. We define the following classes of divergence-free functions, following
the notation of Temam [17]:

V(Ω) ={u : u ∈ D(Ω) := (C∞
0 (Ω))3, ∇ · u = 0}

V (Ω) =V(Ω) in the strong topology of H1
0 (Ω;R3)

V ◦(Ω) ={u : u ∈ H1
0 (Ω;R3), ∇ · u = 0}

It is immediately seen that V (Ω) ⊆ V ◦(Ω). The reverse inclusion does not hold for an
arbitrary open set. For a class of unbounded domains, as that ones with exits at infinity
(for example channels with increasing cross section or the aperture domain), it is known
that V (Ω) 6⊂ V ◦(Ω), and examples of arbitrary finite co-dimension are known (in fact, in
such examples the co-dimension is equal to the number of exits, see Ladyžhenskaya and
Solonnikov [11]). For the question if V (Ω) = V ◦(Ω), in bounded (non-regular) sets, see
the discussion in Section 4.

Now we can define the notion of weak solutions for problem (NS).

Definition 3.2. Let w ∈ C∞(C,R3) be a function such that w = 0 in a neighborhood of
K, w = u∞ in a neighborhood of ∂C and ∇ · w = 0 in C.
We say that a function u ∈ H1(C;R3) is a V -solution for problem (NS) if:



i) u− w ∈ V (Ω);

ii)

∫

C

[ν∇u ∇ϕ + ((u · ∇)u− f)ϕ] dx = 0 ∀ϕ ∈ V (Ω).

If we replace V (Ω) with V ◦(Ω) in conditions i) and ii), we have a V ◦-solution.

Remark 3.3. This definition is clearly independent of the choice of w.

Remark 3.4. In R3 we can choose w = curl vφ, where v is the linear function (x, y, z) →
(−u∞z y + u∞y z,−u∞x z, 0), while φ ∈ C∞(C), φ = 0 on K, and φ = 1 on ∂C.

It is immediate that a V -solution is also a V ◦-solution, therefore existence theorems
only need to be proved for the former type. On the other hand, V -uniqueness generally
does not imply V ◦-uniqueness.

The existence and uniqueness of weak solutions for (NS), regardless of the regularity
of the boundary ∂Ω, follow from Lions [13] and Murat and Simon [14].

Theorem 3.5. The system (NS) admits at least one V -solution (uΩ, pΩ) in the space of
distributions.

Uniqueness is known up to dimension four, and only for V -solutions, and we need an
additional lower bound on the viscosity ν:

Theorem 3.6. Let n ≤ 4. Then there exists ν0(C, K, u∞) such that for ν ≥ ν0 the system
(NS) has only one V -solution.

3.1 The drag

In this section we derive the drag relative to the Navier-Stokes equations. In problem (NS),
the object K moves in a viscous incompressible fluid under the action of an external field
f. Again, the flow is going to be stationary only if a force G(K) = G(K,uΩ, pΩ) balances
the friction, the pressure, and the field f . In other words:

G(K,uΩ, pΩ) = −
∫

∂K

(
ν
∂uΩ

∂n̂
+ pΩ n̂

)
ds−

∫

K

f dx,

where n̂ is the inward normal to ∂K.
The above formula can be substantially simplified using integration by parts, the

Stokes formula, and the boundary conditions of problem (NS). In particular, it is possible
to obtain an expression independent of the pressure pΩ.

As we did above, we multiply the first equation in (NS) by (uΩ − u∞) and integrate
over Ω = C \K. The term concerning the Laplace operator is the same as (8). Regarding
the nonlinear term, we obtain the same equation as in (9), but in this case the vector uΩ

is divergence-free, and we have:

∫

Ω

(uΩ · ∇) uΩ (uΩ − u∞) dx = 0.



Finally, the term with the pressure can be treated as follows

∫

Ω

∇pΩ (uΩ − u∞) dx =

∫

∂Ω

pΩ (uΩ − u∞) · n̂ dx = −
∫

∂K

pΩ u∞ · n̂ dx.

Summing up, it follows that

ν

∫

Ω

|∇uΩ|2 dx + ν

∫

∂K

∂uΩ

∂n̂
u∞ ds = −

∫

∂K

pΩu∞ · n̂ ds +

∫

Ω

f(uΩ − u∞) dx.

This implies that the power is given by the functional F (K):

F (K) = G(K)u∞ = ν

∫

Ω

|∇uΩ|2 dx−
∫

Ω

f(uΩ − u∞) dx− u∞
∫

K

f dx. (12)

Since V -solutions are unique, the functional F (K) is well defined.

3.2 Existence of an optimal shape

We are now ready to prove the existence of a resistance-minimizing shape for the Navier-
Stokes equations. Throughout this section, we need the following technical assumption:

Definition 3.7. We define the following class A of opens subsets of C, by means of the
following conditions:

i) A ⊂ Ww(C);

ii) A is closed under Hausdorff complementary convergence;

iii) for any Ω ∈ A, we have that V (Ω) = V ◦(Ω).

Remark 3.8. An example of class A with the above properties is obtained by all bounded
sets which satisfy a uniform Lipschitz condition (see for instance Bucur and Zolésio [3]
and Adams [1]). For a discussion on more general classes of domains where iii) holds,
see the next section.

Lemma 3.9. Let A as in Definition 3.7. Let Kh ⊂ C be a sequence of compact sets such

that Ωh = C \Kh ∈ A, Ωh
Hc−→ Ω, and let uΩh

be solutions of (NS) in Ωh. Then we have
uΩh

⇀ uΩ, where uΩ is a solution in Ω.

Proof. By Remarks 1.3 and 3.3 we can choose the same w for all the weak solutions
uΩh

. Since uΩh
is uniformly bounded in the H1(C) norm, it weakly converges up to a

subsequence to some function u. Furthermore, u− w ∈ H1
0(C).

We need to see that u is a weak solution of (NS) on Ω. For any ϕ ∈ V(Ω), by
Remark 1.3 we have that ϕ ∈ V(Ωh), eventually in h. For all such h, by assumption we
have:

∫

C

ν∇uΩh
∇ϕ dx +

∫

C

(uΩh
· ∇)uΩh

ϕdx−
∫

C

fϕ dx = 0



And this equation passes to the limit as in Lemma 2.4.
It remains to show that u − w ∈ V ◦(Ω). Let ϕ ∈ C∞

c (Ω): again, we have that
ϕ ∈ C∞

c (Ωh), eventually in h. It follows that:

∫

Ω

(uΩh
− w)∇ϕ dx =

∫

Ωh

(uΩh
− w)∇ϕdx = 0

Since uΩh
⇀ u, we obtain u ∈ V ◦(Ω) = V (Ω), as needed.

The existence theorem is then stated as follows:

Theorem 3.10. Let C be an open set, and B ⊂ C a bounded open subset. Let f ∈
L2(C;R3), and ν as in Theorem 2.2. Then for every γ > 0 the functional F (K), defined
in (12), has at least one minimizer in the class:

Kγ,w = {K ⊂ B : meas(K) ≥ γ, C \K ∈ A}.

Proof. Let Kh ∈ Kγ,w be a minimizing sequence for F . We set Ωh = C \Kh and denote
by uΩh

the solution to (NS) in Ωh. Since {Ωh} is a bounded sequence of open sets, we can
extract a subsequence which converges to some set Ω in the Hausdorff complementary
topology. By Theorem 1.7 we have that Ω ∈ Ww(C), and, by Lemma 3.9, uΩh

converges
weakly to uΩ, a solution to (NS) in Ω. Since F is weakly lower semicontinuous, it follows
that u is a minimum.

Remark 3.11. In the above theorem, we added the boundedness condition K ⊂ B to avoid
minimizing sequences that do not converge. For example, if C = R3, one can imagine
an unbounded minimizing sequence as follows: let D be a ball with the prescribed volume

γ, and let Kh be equal to D, but stretched h times in the direction of u∞, and h−
1

n−1

times in any orthogonal direction to u∞. In this case Kh converges to a line parallel to
u∞, which has zero capacity and therefore is negligible as boundary condition. This means
that the solution in the limiting domain is simply uΩ = u∞, which obviously leads to null
resistance.

4 Further remarks

In Theorem 3.10, we proved the existence of minima for classes of domains for which the
equality V (Ω) = V ◦(Ω) holds. A natural question is whether this condition holds for all
bounded sets Ω.

In fact, Šverák [16] proved such equality for any Ω ∈ Ol(C) (with C a bounded
subset of R2), and thus the existence of an optimal shape without the above restriction.
Unfortunately, his proof relies crucially on stream functions, which are available only in
two dimensions.

The above characterization problem has a long history: it was first clearly stated by
Heywood [7], who recognized that the equality of V (Ω) and V ◦(Ω) is equivalent to the
uniqueness of the linear Stokes equations. He provided an example of an unbounded open
set where the two spaces differ, as well as sufficient conditions which guarantee equality



for bounded and exterior domains, with C2 regularity. See the discussion in Galdi [6],
§ III.4.

After that, several authors improved Heywood’s results. Observe that in Lions [12]
it was proved (several years before Heywood paper) that V (Ω) = V ◦(Ω) for all bounded
Lipschitz domains, even if this regularity of the boundary was not stated explicitly in the
hypotheses. Later, Temam [17] recognized the necessity of this assumption. The known
best result is given in reference [2], where Bogovskĭı proved the equality V (Ω) = V ◦(Ω)
for finite unions of sets which are star-shaped with respect to a ball. To our knowledge,
this is the largest class where equality is known for n ≥ 3. Still, it is not large enough to
include Oc,r(C) or Ww(C).

On the other hand, no bounded counterexamples are known, and the result of S̆verák in
dimension two suggests that topology (or capacity constraints) may be a more important
issue than regularity.
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[16] V. Šverák, On optimal shape design, J. Math. Pures Appl. (9) 72 (1993), no. 6,
537–551.

[17] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland
Publishing Co., Amsterdam, 1977, Studies in Mathematics and its Applications, Vol.
2.


