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Abstract In the Black-Scholes model, consider the problem of selecting a
change of drift which minimizes the variance of Monte Carlo estimators for
prices of path-dependent options.

Employing Large Deviations techniques, the asymptotically optimal change
of drift is identified as the solution to a one-dimensional variational problem,
which may be reduced to the associated Euler-Lagrange differential equation.

Closed-form solutions for geometric and arithmetic average Asian options
are provided.
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1 Introduction

Monte Carlo simulation is the method of choice for pricing complex deriva-
tives, such as path dependent options or contracts which rely upon several
underlying assets. The main reason for the popularity of this method is ease
of implementation, which only requires the ability to generate sample paths
of the asset price and evaluating the corresponding derivative payoffs.

From a computational viewpoint, an option pricing problem is usually re-
duced to the evaluation of the expected payoff EP [G] under a certain risk-
neutral probability P , which is unique in a complete market, and in general it
may be chosen according to several optimality criteria. The usual Monte Carlo
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estimate of EP [G] is obtained by the sample average Ḡn = 1
n

∑n
i=1 Gi from

a IID sample (Gi)n
i=1 of the payoff. When G is square-integrable, the Central

Limit Theorem implies that an asymptotic confidence interval for EP [G] is
given by: (

Ḡn − qα
σn√

n
, Ḡn + qα

σn√
n

)

where σ2
n = 1

n

∑n
i=1(Gi − Ḡn)2 is the sample variance of (Gi)n

i=1, and qα is
the (1− α/2)-quantile of the standard normal distribution.

In practice, many derivative contracts are designed to offer a payout in
a specific event of interest to the buyer, and otherwise expire with no value,
which means that an event with small probability accounts for most of the
option price. In such a situation, this confidence interval can be very unreliable
for two reasons. First, the large variance of G may require a prohibitively large
number of simulations n for a prescribed accuracy. Second, even a relatively
large sample is likely to miss rare but large payoffs, generating a low Ḡn

combined with a low σ2
n. This creates the perverse effect of a deceptively narrow

confidence interval, which in most cases grossly misses the true expectation
EP [G]. To put it differently, if a small event accounts for a large fraction of
the price, then it accounts for an even larger fraction of the variance, and the
normal asymptotics are very inaccurate.

Importance sampling is a variance reduction method which addresses this
problem by simultaneously changing the probability P and the payoff G as
to retain the same expected value, while significantly reducing variance. In a
nutshell, if Q is a probability equivalent to P and H = G dP

dQ , then:

EP [G] = EQ [H]

Thus, an optimal choice of Q should minimize the variance under the new
probability Q of the new payoff H:

VarQ

(
G

dP

dQ

)
= EP

[
G2 dP

dQ

]
− EP [G]2 (1.1)

As a matter of fact, dQ
dP = G

EP [G] achieves zero variance, but unfortunately
EP [G] is the unknown in the first place, so in this generality the problem of
selecting an optimal change of measure is ill-posed.

Thus, one has to minimize (1.1) over a subclass of equivalent probabilities,
selected as to add little overhead to the simulation of the payoff. But even
once such a restriction is made, the variance in (1.1) is very unlikely to have
a closed-form solution unless EP [G] already has one. Hence, in practice one
considers an asymptotic approximation of (1.1), and minimizes this quantity
over the chosen class of probabilities.

A heuristic approach, which goes back to Siegmund (1976), is to consider a
Large Deviations approximation of the variance in (1.1). Then the probability
which minimizes the asymptotic variance has proved to be very successful in
reducing variance in a broad range of applications. Nevertheless, Glasserman
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and Wang (1997) showed a number of examples where Large Deviations heuris-
tics fail. The caveat, pointed out by Dupuis and Wang (2004), is that Large
Deviations lead to several candidates for optimality, depending on the class
of changes of probability considered. If the class is too small, then asymptotic
optimality may fail. If it is too large, then the “optimal” change of measure
may greatly increase the computational burden of simulation.

Here the main modeling dilemma is between the class of deterministic,
or “open-loop”, changes of measure and that of adaptive, or “feedback” ones.
The former class has negligible impact on simulation speed, but its asymptotic
optimality properties are unclear. For the latter class, asymptotic optimality
holds in great generality (Dupuis and Wang 2004, 2005), but the overall speed
increase is less clear.

To devise efficient importance sampling schemes, Glasserman, Heidelberger
and Shahabuddin (1999) considered a discretization of the usual Black-Scholes
model on a time grid t1, . . . , tn, so that any option payoff can be approximated
as a function of n real variables. Then they showed that the variance of (1.1)
can be approximated with the Laplace’s method for integrals, and studied
the problem of minimizing this asymptotic variance through a deterministic
change of drift. As already mentioned, the choice of a deterministic drift is
motivated by its efficient implementation, which translates variance reduction
into speed increase. On the other hand, it requires a careful evaluation of the
asymptotic optimality properties.

From an applied viewpoint, the crucial question is the calculation of the
optimal drift, identified by Glasserman et al. (1999) as the solution to a fixed
point problem, which must be solved numerically through an iterative proce-
dure.

This paper takes the approach of Glasserman et al. (1999) to a continuous-
time setting, where the optimal deterministic drift in the Black-Scholes model
is identified as the solution of a one-dimensional variational problem. In contin-
uous time – and this is the major advantage of this approach – the variational
problem reduces to the familiar Euler-Lagrange ODE. In the case of Asian
options, considered also by Glasserman et al. (1999), the optimal change of
drift even admits closed-form solutions.

From the mathematical viewpoint, the continuous time setting poses a
more challenging environment. The Laplace’ approximation of integrals, which
roughly corresponds to a large deviations principle in Rn, must be replaced
by the sample-path Large Deviations result of Schilder (1966) combined with
Varadhan’s (1966) Integral Lemma, and a number of technical estimates are
required to fully justify their application.

At an intuitive level, the main idea of the paper is briefly summarized in
section 2 with a heuristic argument, which in spite of its audacity provides the
right answer. Section 3 contains the rigorous formulation of the problem and
the main results, leaving the proof to the Appendix. If the payoff G is a con-
tinuous function of the price path, and satisfies a mild growth condition, then
there exists a “candidate optimal” drift which solves a one-dimensional varia-
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tional problem. This candidate is indeed optimal if it satisfies a given equality,
which may involve solving another one-dimensional variational problem.

Section 4 studies in detail the case of Asian Options. For a geometric aver-
age call option, the optimal change of drift is simply the parabola (4.5) below,
while for an arithmetic average option, the optimal change of drift is given
by the more complicated formula (4.12). Although the two expressions seem
rather different, the optimal drifts for a geometric and arithmetic average op-
tions are in fact very close (Figure 4.1), as their similar payoffs would suggest.

The last observation highlights another important aspect of this method-
ology. It is developed in the simple Black-Scholes model, but it provides useful
guidance also in presence of more complex features, such as stochastic volatil-
ity, which are akin to perturbations in the option payoff. Just as the optimal
drift of an arithmetic average Asian option is very similar to its geometric
counterpart, its optimal drift in a stochastic volatility model will conceivably
be close to that in the Black-Scholes model, at least for current volatility
parameters and for near expirations.

Some numerical examples follow, illustrating the effectiveness of the method.
The best performance is achieved for out-of-the money options, but the vari-
ance reduction is six- to ten- fold even for at-the-money strikes.

2 Heuristics

Recall three classic “formulas”. The first one is the heuristic representation
(due to Feynman) of the Wiener measure on C ([0, T ] ;R) (for a detailed dis-
cussion, see Stroock (1993)):

P (dx) = c exp

(
−1

2

∫ T

0

ẋ2
t dt

)
dx

The second formula is the Cameron-Martin representation of the change of
measure induced by the translation x 7→ x + h on the Wiener space:

dQh

dP
(x) = exp

(∫ T

0

ḣtdxt − 1
2

∫ T

0

ḣ2
t dt

)
(2.1)

Finally, recall the Laplace’ method for the approximation of integrals:

∫ +∞

−∞
exp (f(x)) dx ≈ 1

c
exp

(
max

x
f(x)

)
(2.2)

Combining these formulas to approximate the second moment in (1.1) yields:

EP

[
G2 dP

dQh

]
≈ exp

(
max

x

(
2F (x) +

1
2

∫ T

0

(ẋt − ḣt)2dt−
∫ T

0

ẋ2
t dt

))
(2.3)
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where F = log G. Thus, minimizing asymptotic variance leads to the problem:

min
h

max
x

(
2F (x) +

1
2

∫ T

0

(ẋt − ḣt)2dt−
∫ T

0

ẋ2
t dt

)
(2.4)

Swapping the order of optimization, the minimax problem above reduces to:

max
h

(
2F (h)−

∫ T

0

ḣ2
t dt

)
(2.5)

which is a classical one-dimensional variational problem. Formally, the corre-
sponding Euler-Lagrange becomes:

DF (h) + ḧ = 0 (2.6)

where DF is understood as a Frechet derivative.
Needless to say, the above argument is heuristic at best and a wild guess

at worst. Indeed, it involves derivatives of non-differentiable Brownian paths,
it applies Laplace asymptotics in infinite-dimensions, and assumes the validity
of a minimax result. In spite of all these issues, up to some mild assumptions
on F this characterization of the optimal drift is essentially correct, and the
next section (along with the appendix) makes this result precise.

3 Main Result

Assume that the price of the underlying asset St follows the Black-Scholes
model under some risk-neutral probability P :

St = S0e
(r−σ2/2)t+σWt (3.1)

where Wt is a standard Brownian Motion, r the interest rate and σ the volatil-
ity. Denote by:

WT ≡ {x ∈ C([0, T ],R), x(0) = 0}
the Wiener space of continuous functions on [0, T ] vanishing at zero. This
space is endowed with the topology of uniform convergence and with the usual
Wiener measure P , defined on the completion of the Borel σ-field FT , under
which the coordinate process Wt(x) = xt is a standard Brownian Motion with
respect to (Ft)t∈[0,T ], the usual augmentation of the natural filtration of W .

In this setting, a derivative contract can be identified with a functional G
of the price path (St)t∈[0,T ], but ease of presentation suggests describing it as
a function of the shocks process (Wt)t∈[0,T ].

Definition 3.1 A payoff is a non-negative functional G :WT 7→ R+, contin-
uous in the uniform topology.
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Example 3.2 Consider the arithmetic average Asian option. Its payoff is given
by ( 1

T

∫ T

0
Stdt−K)+, which corresponds to the functional:

G(x) =

(
1
T

∫ T

0

S0e
(r−σ2/2)t+σxtdt−K

)+

Denote by F = log G, taking values in R ∪ {−∞}, and define by:

HT ≡
{

h ∈ AC [0, T ] : h(0) = 0,
∫ T

0
ḣ2

t dt < ∞
}

the Cameron-Martin space of absolutely continuous functions with square in-
tegrable derivative. For any deterministic drift h ∈ HT , consider the stochastic
exponential:

E
(∫ ·

0

ḣsdWs

)

t

= exp
(∫ t

0

ḣsdWs − 1
2

∫ t

0

ḣ2
sds

)
(3.2)

which induces an equivalent probability measure Qh via the Radon-Nikodym
derivative dQh/dP = E

(∫ ·
0
ḣtdWt

)
T
. Under Qh the process W̃t ≡ Wt − ht

is a standard Brownian Motion by the classical Cameron-Martin theorem (or
simply by Itô’s formula). The objective function is the second moment in (1.1):

EP

[
G2 dP

dQh

]
=EP

[
exp

(
2F (W )−

∫ t

0

ḣsdWs +
1
2

∫ t

0

ḣ2
sds

)]

When Monte Carlo simulation is necessary to estimate EP [G], the above quan-
tity is in general intractable. Instead, as in Glasserman et al. (1999), one con-
siders the small-noise asymptotics:

L(h) = lim sup
ε↓0

ε log EP

[
exp

(
1
ε

(
2F

(√
εW

)−
∫ T

0

√
εḣtdWt +

1
2

∫ T

0

ḣ2
t dt

))]

which correspond to approximating (1.1) with eL(h).

Definition 3.3 An asymptotically optimal drift is a solution to the problem:

min
h∈HT

L(h) (3.3)

The goal is to find a deterministic expression for L(h), which becomes suitable
for optimization. This is possible under the following:

Assumption 3.4 F :WT 7→ R ∪ {−∞} is continuous and satisfies:

F (x) ≤ K1 + K2 max
t∈[0,T ]

|xt|α (3.4)

for some constants K1,K2 > 0 and α ∈ (0, 2).
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Remark 3.5 Condition (3.4) requires that, roughly speaking, the log payoff is
subquadratic in the supremum of the log price. This is the case for virtually
all options of practical interest.

Theorem 3.6 Let F satisfy assumption 3.4. Then:

i) if h ∈ HT , and ḣ has finite variation, then:

L(h) = sup
x∈HT

(
2F (x) +

1
2

∫ T

0

(ẋt − ḣt)2dt−
∫ T

0

ẋ2
t dt

)
(3.5)

ii) for all h ∈ HT , there exists maximizers to both (3.5) and (3.6) below:

sup
x∈HT

(
2F (x)−

∫ T

0

ẋ2
t dt

)
(3.6)

iii) if ĥ is a solution to (3.6), then ĥ is asymptotically optimal if:

L(ĥ) = 2F (ĥ)−
∫ T

0

˙̂
h2

t dt (3.7)

Furthermore, if (3.7) holds then ĥ is the unique solution of (3.6).

Theorem 3.6 yields the following method to find an asymptotically optimal
drift. First, find ĥ by solving the Euler-Lagrange equation of (3.6). Then, ĥ is
an asymptotically optimal drift if it has a derivative with finite variation and
satisfies the minimax condition (3.7). This is certainly the case when F is a
concave functional, and then the standard minimax result for concave-convex
functions applies. In general, one has to solve a new variational problem to
evaluate L(ĥ), which also reduces to an Euler-Lagrange ODE.

Once ĥ is found, (3.2) and the Cameron-Martin theorem imply that:

EP [G] = EQĥ

[
exp

(
F

(
W̃ + ĥ

)
−

∫ T

0

˙̂
htdW̃t − 1

2

∫ T

0

˙̂
h2

t dt

)]
(3.8)

where W̃ is a standard Brownian motion under Qĥ. Thus, in the new Monte
Carlo simulation the drift of St changes from r to r + σ

˙̂
ht, while the payoff is

rescaled by the factor exp
(
− ∫ T

0

˙̂
htdW̃t − 1

2

∫ T

0

˙̂
h2

t dt
)
.

Remark 3.7 In this paper, (3.7) embodies the delicate issue of whether asymp-
totic optimality holds, and in general the answer depends on the functional
considered. In the case of the arithmetic average Asian option, the value L(ĥ)
can only be evaluated numerically, and (3.7) can be established with several
significant digits, but not with absolute certainty.

On the contrary, a violation of (3.7) immediately detects a case where
asymptotic optimality fails, because a strict inequality, unlike an equality, can
be established numerically with sufficient accuracy.
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Dupuis and Wang (2004) show that, in a discrete time setting with IID
returns, asymptotic optimality holds under very mild conditions for adaptive,
i.e. path-dependent drifts. The main problem with such drifts is the substan-
tial overhead required by their implementation, which requires the recursive
calculation of the change of drift for each simulated path. Thus, variance re-
duction gains must be split between the decreased number of simulations, and
the increased time for each simulation.

By contrast, a deterministic drift requires virtually no overhead, as the
same drift is added to all paths, with no extra calculations involved. Consid-
ering the substantial variance reduction obtained in the next section with a
deterministic drift, the additional performance gain from a path-dependent
drift appears unclear.

4 Asian Options

This section employs Theorem 3.6 to find explicit formulas for the asymp-
totically optimal changes of drift, for geometric and arithmetic average Asian
options. As mentioned in the introduction, the relevance of these examples goes
beyond the specific model considered, as the asymptotically optimal changes
of drift derived under the Black-Scholes assumptions can be very effective
(although not optimal anymore) even in more complex models.

For example, the geometric average option considered in the first exam-
ple allows an explicit solution (Kemna and Vorst 1990) in the Black-Scholes
model, so Monte-Carlo is not necessary. However, the introduction of a min-
imal imperfection such as a dividend may require simulation, which is much
more efficient when performed under the optimal drift for the option without
dividend.

Similarly, for the arithmetic average option in the second example one may
resort to alternative numerical methods, (see for example Geman and Yor
(1992), Dufresne (2001), Lyasoff (2006) and the references therein). Again,
the latter formulas are not valid under model perturbations, while Monte-
Carlo simulation may easily accommodate them, and a change of drift greatly
increases its efficiency.

Example 4.1 (Geometric average) Denoting by St the asset price at time t,
and by K the strike price, the payoff of a Geometric Average Asian Option is:

(
e

1
T

∫ T
0 log Stdt −K

)+

Letting a = σ/T and c = K
S0

exp
(
−(r − σ2

2 )T
2

)
, rewrite this payoff as:

G(x) =
K

c

(
ea

∫ T
0 xtdt − c

)+

(4.1)

To check Assumption 3.4, note that F (x) = −∞ on the set G(x) = 0, while
on the set G(x) > 0, it is sufficient to choose α = 1,K1 = log K

c ,K2 = aT .
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Also, (3.7) is certainly satisfied since F is concave. Now, rewrite (3.6) as:

max
x∈HT

(
2 log

(
ea

∫ T
0 xtdt − c

)
−

∫ T

0

ẋ2
t dt

)
(4.2)

The corresponding Euler-Lagrange equation is:

ẍt = −α (4.3)

where

α = a
exp

(∫ T

0
xtdt

)

exp
(∫ T

0
xtdt

)
− c

(4.4)

Hence, all solutions are of the form:

xt = −α

2
t2 + γt (4.5)

and therefore belong to H̃T . The maximizing solution is found by choosing α
and γ that simultaneously solve (4.4) and (4.2). More precisely, substituting
(4.5) into (4.4) yields

γ (α) =
aT 3α− 6 log(α−a

cα )
3aT 2

(4.6)

and for this value of γ(α), (4.2) is solved by maximizing over α > a. The
optimal α̂ is unique by strict concavity, and is found implicitly via the equation:

aα̂T 3 + 3 log
(

α̂− a

cα̂

)
= 0 (4.7)

This α̂ satisfies γ (α̂) = α̂T and therefore x̂t = − α̂
2 t2 + α̂T t.

Example 4.2 (Arithmetic average) The payoff is now
(

1
T

∫ T

0
Stdt−K

)+

, which
leads to the functional:

G (x) = d

(∫ T

0

exp (axt + bt) dt− c

)+

(4.8)

with a = σ, b = r − 1
2σ2, c = K T

S0
and d = S0

T . Furthermore, Assumption 3.4

holds with α = 1, K1 = log d + log
(

exp(bT )−1
b

)
and K2 = a. In this case, the

variational problem (3.6) becomes:

max
x∈HT

(
2 log d + 2 log

(∫ T

0

exp (axt + bt) dt− c

)
−

∫ T

0

ẋ2
t dt

)
(4.9)

and the Euler-Lagrange equation is:

ẍt = λ exp (axt + bt) (4.10)
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where
λ = − a∫ T

0
exp (axt + bt) dt− c

(4.11)

Equation (4.10) admits the family of solutions:

xt =
α− b

a
t− 2

a
log

(
exp (αt) + γ

1 + γ

)
(4.12)

Substituting (4.12) into (4.11), the parameters (α, γ) are linked to λ by the
condition:

λ = − 2γα2

a (1 + γ)2
(4.13)

Eliminating λ from (4.13) and (4.11) yields:

2γα2

a (1 + γ)2
=

aα (exp (αT ) + γ)
(1 + γ) (exp (αt)− 1)− cα (exp (αT ) + γ)

(4.14)

For a fixed α, (4.14) defines a cubic polynomial in γ which yields an explicit
solution. Denote by α̂ the maximizer, and by γ̂ and x̂ the corresponding pa-
rameter and solution.

To check (3.7), maximize the functional:

2 log d+2 log

(∫ T

0

exp (axt + bt) dt− c

)
+

1
2

∫ T

0

(ẋt− ˙̂xt)2dt−
∫ T

0

ẋ2
t dt (4.15)

over x ∈ HT . Here the Euler Lagrange ODE is

ẍt = 2λ exp (axt + bt)− ¨̂xt (4.16)

where, λ is defined as in (4.11).
This ODE does not admit an explicit solution, except in the trivial case

λ = 0. However, a numerical integration of the Euler-Lagrange equation shows
(3.7) holds with several significant digits.

5 Numerical Results

Consider an arithmetic average Asian option with parameters T = 1, r =
5%, σ = 25%, S0 = 50,K = 70, as in Glasserman et al. (1999), and com-
pare the results of the simulation under three different drifts: the risk-neutral
drift, corresponding to usual Monte Carlo simulation, and the asymptotically
optimal drifts for an Asian call option of arithmetic and geometric average
type. The price paths in absence of random shocks are plotted in Figure 4.1,
and show that the arithmetic and geometric drifts are indeed very similar,
although the closed form expression is much simpler (in fact, quadratic) in the
geometric case.
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Fig. 4.1 The plots represent the time-evolution (in years) of an asset price (in dollars),
in absence of random shocks, under the Black-Scholes model with initial price 50, interest
rate 5%, volatility 25%, with risk-neutral drift (dotted line), and asymptotically optimal
drifts for an Asian call option with strike 70 of geometric average (solid line) and arithmetic
average (dashed line) type.

Table 5.1 shows the results of a typical simulation for an arithmetic average
Asian option, for different choices of drift and the sample size. Note that the
approximate theoretical price obtained by both the Turnbull and Wakeman
(1991) and Levy (1992) formulas is 5.06, and heavily underprices the option.
The reason is that both approximations are derived by at-the-money Taylor
expansions, which become inaccurate for out-of-the-money strikes.

Since the option is of arithmetic average type, the lowest standard error
is obtained with the arithmetic drift, immediately followed by the geometric.
Even for small sample sizes, the variance obtained with the optimal arithmetic
drift is only slightly lower than that obtained from the geometric drift, which
offers a much simpler alternative.

Table 5.2 compares the performance, in terms of variance reduction, of
the two drifts across a range of strikes and volatilities. The performance gap
increases with the strike, and decreases with volatility. These observations have
a common explanation in terms of moneyness, since both a larger strike and a
lower volatility cause the option to become more out-of-the-money, and then
the role of the drift in reshaping the payoff distribution becomes more critical.

6 Conclusion

Importance sampling can greatly improve the performance of Monte Carlo
methods in option pricing, but its success hinges on a change of probability
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Sample Size Arithmetic Geometric Risk-Neutral

100,000 6.16 6.21 6.0
(0.021) (0.022) (0.22)

20,000 6.26 6.33 5.9
(0.048) (0.050) (0.44)

5,000 6.2 6.2 6.
(0.095) (0.098) (1.1)

Table 5.1 Monte Carlo estimators of an arithmetic Asian option using different changes
of drift. Prices are in cents. Parameter values are T = 1, r = 5%, S0 = 50, K = 70, σ = 25%.
The arithmetic and geometric drifts are given by (4.9) and (4.2) respectively. Simulations
are performed with a time-increment of 1/252, corresponding to one business day.

Volatility Strike Price (Std. Err.) Variance Ratios
Arithmetic Geometric

10% 50 191.8 (0.086) 6.56 6.53
60 0.397 (0.00050) 330 320

15% 50 247.1 (0.12) 7.11 7.04
60 7.51 (0.0076) 51 50

20% 50 304.0 (0.15) 7.59 7.50
60 28.00 (0.025) 26.5 26.0
70 1.063 (0.0013) 310 280

25% 50 361.3 (0.18) 8.03 7.92
60 60.35 (0.049) 20.1 19.7
70 6.17 (0.0067) 101 94

30% 50 419.3 (0.22) 8.47 8.34
60 101.1 (0.078) 17.3 16.9
70 18.17 (0.018) 56 53
80 2.75 (0.0033) 260 230

35% 50 477.2 (0.25) 8.96 8.77
60 147.3 (0.11) 16.0 15.6
70 38.03 (0.035) 39.5 37.3
80 8.84 (0.0097) 118 106
90 1.95 (0.0024) 400 330

40% 50 535.1 (0.28) 9.49 9.27
60 197.9 (0.14) 15.2 14.8
70 65.3 (0.057) 31.7 30.1
80 20.18 (0.021) 73 66
90 6.09 (0.0070) 210 170

Table 5.2 Variance Reduction Ratios across strikes and volatilities. Parameter values are
T = 1, r = 5%, S0 = 50 and each simulation is performed with 1,000,000 paths. Variance
ratios are obtained dividing the variance of the risk-neutral sample by the variance of the
geometric and arithmetic samples respectively. Reported option prices and standard errors
are from the arithmetic sample, and are quoted in cents. Only significant digits are reported.

(or equivalently, of drift) which is both effective in reducing variance, and
parsimonious in computational effort.

Although simulation ultimately takes place in a discrete-time setting as in
Glasserman et al. (1999), this paper employs the continuous-time formulation
to identify the asymptotically optimal change of drift as the solution of a
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variational problem. Furthermore, closed-form solutions are derived for Asian
options.

The role of the optimal change of drift in reducing variance is twofold:
first, it serves as a Girsanov transformation to perform importance sampling.
Second, as observed by Glasserman et al. (1999), it provides a very effective
“direction” for stratification algorithms, which magnify the performance in-
crease.

The optimal drifts are derived under the Black-Scholes assumptions, but
can be employed effectively also in more complex models, where explicit for-
mulas for optimal drifts may not be available.

Finally, this paper considers derivatives on a single asset, but the same
methodology could be performed with several assets, studying the problem:

sup
h∈Hn

T

(
2F (h)− |ḣ|2

)

which leads to a system of Euler-Lagrange ODEs formally equivalent to (2.6).

A Appendix

The proof of Theorem 3.6 is divided into several lemmas. the first one shows the
existence of solutions to problems (3.5) and (3.6), using a standard variational
argument.

Lemma A.1 Let F satisfy Assumption 3.4. Then for any h ∈ HT and M > 0
there exists a maximizer for the problem:

max
x∈HT

(
2F (x) + M

∫ T

0

(ẋt − ḣt)2dt− 2M

∫ T

0

ẋ2
t dt + (1− 2M)

∫ T

0

ḣ2
t dt

)

(A.1)

Proof Recall that if ġn → ġ weakly in L2 [0, T ], then gn → g uniformly in
[0, T ]. Since F is continuous in the uniform norm, it follows that it is also
weakly continuous. Let M > 0 and fix h ∈ HT . Rewrite (A.1) as

max
x∈HT

(
2F (x)−M‖h + x‖2HT

+ ‖h‖2HT

)

As a function of x, M‖h + x‖2HT
is convex and finite, hence norm continuous.

Thus, it is also weakly lower semi-continuous. Since F is weakly continuous,
then the function x 7→ 2F (x) −M‖x + h‖2HT

+ ‖h‖2HT
is weakly upper semi-

continuous. Assumption 3.4 implies that

2F (x)−M‖x + h‖2HT
+‖h‖2HT

≤ 2K1 + 2K2‖x‖α
∞ −M‖x + h‖2HT

+ ‖h‖2HT

≤ 2K1 + 2K2T
α/2‖x‖α

HT
−M‖x + h‖2HT

+ ‖h‖2HT

Since α < 2, the coercivity property follows:

lim
‖x‖HT

→∞

(
2F (x)−M‖h + x‖2HT

+ ‖h‖2HT

)
= −∞

and the existence of a maximizer follows by upper semi-continuity.
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The remaining part of the Proof of Theorem 3.6 requires some preliminaries
on the theory of Large Deviations. Here are summarized some basic definitions,
mainly with the purpose of introducing notation, while the reader is referred
to the monographs of Deuschel and Stroock (1989), Dupuis and Ellis (1997)
and Dembo and Zeitouni (1998) for an extensive treatment of topic.

Definition A.2 Let (X,B) be a metric space with its Borel σ-algebra, and
I : X 7→ [0, +∞] a lower semi-continuous function. A family of measures
(µε)ε∈(0,δ) satisfies a large deviation principle with good rate function I if:

i) {x ∈ X : I(x) ≤ α} is compact for all α ∈ R;
ii) For all sets A ∈ B:

− inf
x∈A◦

I(x) ≤ lim inf
ε→0

ε log µε(A) ≤ lim sup
ε→0

ε log µε(A) ≤ − inf
x∈Ā

I(x)

On the Wiener space the following result holds. It is originally due to
Schilder (1966), while modern proofs can be found in Dembo and Zeitouni
(1998, Theorem 5.2.3) and Deuschel and Stroock (1989, Theorem 1.3.27)

Theorem A.3 (Schilder) Let X = WT and µε be the probability on WT

induced by the process
√

εW , where W is a standard Brownian Motion. Then
(µε)ε∈(0,δ) satisfies a large deviations principle (Definition A.2) with good rate
function:

I(x) =

{
1
2

∫ T

0
ẋ2

t dt if x ∈ HT

+∞ if x ∈WT \HT

(A.2)

The next result, known as Varadhan’s Lemma, is the extension of the
Laplace approximation for integrals to a general (infinite-dimensional) setting.
A proof can be found in Dembo and Zeitouni (1998, Theorem 4.3.1).

Lemma A.4 (Varadhan) Let (Zε)ε∈(0,δ) be a family of X-valued random
variables, whose laws µε = Zε(P ) satisfy a large deviations principle (Defini-
tion A.2) with rate function I. If H : X 7→ R is a continuous function which
satisfies:

lim sup
ε→0

ε log E
[
exp

(γ

ε
H(Zε)

)]
< ∞ (A.3)

for some γ > 1, then:

lim
ε→0

ε log E

[
exp

(
1
ε
H(Zε)

)]
= sup

x∈X
(H(x)− I(x)) (A.4)

The present setting requires a slight generalization of this result, as to allow
H : X 7→ [−∞,∞) rather than H : X 7→ R. The following Lemma (cf.
Glasserman et al. (1999, Lemma 2.1)) provides the necessary extension.

Lemma A.5 Let H : X 7→ [−∞,∞). Under the assumptions of Lemma A.4,
the following holds for any A ∈ B:

sup
x∈A◦

(H(x)− I(x)) ≤ lim inf
ε→0

ε log
(∫

A◦
exp

(
1
ε
H(Zε)

)
dµε

)

≤ lim sup
ε→0

ε log
(∫

Ā

exp
(

1
ε
H(Zε)

)
dµε

)
≤ sup

x∈Ā

(H(x)− I(x))
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Proof The second inequality is trivial, while the first one follows directly from
Dembo and Zeitouni (1998, Lemma 4.3.4), fixing x ∈ A◦ instead of x ∈ X. For
the third inequality, note that if F ≡ −∞ the result holds trivially. Assuming
F is not identically −∞, let C be a closed subset of X. For M > 0, consider
the set CM = C

⋂{F (x) ≥ −M} which is closed by the continuity of F . Thus,
one has that:∫

C

exp
(

1
ε
F (Zε)

)
dµε =

∫

CM

exp
(

1
ε
F (Zε)

)
dµε +

∫

C\CM

exp
(

1
ε
F (Zε)

)
dµε

≤
∫

CM

exp
(

1
ε
F (Zε)

)
dµε + exp

(
−M

ε

)
µε (C\CM )

Since (µε)ε∈(0,δ) satisfy the LDP with good rate function I:

lim sup
ε→0

ε log
(

exp
(
−M

ε

)
µε (C\CM )

)
≤ −M − inf

x∈C\CM

I (x)

Using Varadhan’s Lemma on F1CM (Dembo and Zeitouni 1998, Exercise
4.3.11)

lim sup
ε→0

ε log
(∫

CM

exp
(

1
ε
F (Zε)

)
dµε

)
≤ sup

x∈CM

(F (x)− I (x))

and hence (cfr. Dembo and Zeitouni (1998, Lemma 1.2.15)):

lim sup
ε→0

ε log
(∫

CM

exp
(

1
ε
F (Zε)

)
dµε +

(
exp

(
−M

ε

)
µε (C\CM )

))

≤ max

(
sup

x∈CM

(F (x)− I (x)) ,−M − inf
x∈C\CM

I (x)

)

≤ max
(

sup
x∈C

(F (x)− I (x)) ,−M

)

The claim follows as M →∞.

Lemma A.6 Let F satisfy Assumption 3.4, and define Fh :W 7→ R as:

Fh(x) = 2F (x)−
∫ T

0

ḣtdxt +
1
2

∫ T

0

ḣ2
t dt

Then Fh is well-defined, norm continuous and satisfies (A.3) for any h ∈ H̃T

and γ > 1.

Proof Since F is continuous, the continuity of Fh will follow from the continu-
ity of x 7→ ∫ T

0
ḣdxt. Since ḣ has finite variation on [0, T ] for each h ∈ H̃T , the

integral
∫ T

0
ḣdxt is defined path-wise in the Stieltjes sense. For any f ∈ WT ,

integration by parts and the continuity of f imply that:
∣∣∣∣∣
∫ T

0

ḣdft

∣∣∣∣∣ =

∣∣∣∣∣ḣ(T )f(T )−
∫ T

0

ftdḣt

∣∣∣∣∣ ≤ ‖f‖WT
‖Var(ḣ)
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where Var(ḣ) denotes the total variation of ḣ. Thus continuity follows by the
finite variation assumption. To check the integrability condition (A.3), apply
the Cauchy-Schwarz inequality to see that:

ε log EP

[
exp

(
γ

ε

(
2F

(√
εW

)−
∫ T

0

ḣtd
(√

εW
)
t
+

1
2

∫ T

0

ḣ2
t dt

))]

≤ γ

2

∫ T

0

ḣ2
t dt+

ε

2
log EP

[
exp

(
− 2γ√

ε

∫ T

0

ḣtdWt

)]
+

ε

2
log EP

[
exp

(
4γ

ε
F

(√
εW

))]

(A.5)

The first term is finite. For the second, observe that
∫ T

0
ḣtdWt ∼ N

(
0,

∫ T

0
ḣ2

t dt
)
,

whence:

lim sup
ε→0

ε

2
log EP

[
exp

(
− 2γ√

ε

∫ T

0

ḣtdWt

)]
= γ2

∫ T

0

ḣ2
t dt < ∞

It remains to consider the last term in (A.5). Assumption 3.4 implies that:

ε

2
log EP

[
exp

(
4γ

ε
F

(√
εx

))]
≤ 2γK1+

ε

2
log E

[
exp

(
4γK2

ε1−α/2

(
sup

0≤t≤T
|W (t)|

)α)]

and one has to check that the last term is finite. To see this, observe that:

EP

[
exp

(
4γK2

ε1−α/2

(
sup

0≤t≤T
|W (t)|

)α)]
≤ 2EP

[
exp

(
4γK2

ε1−α/2

(
sup

0≤t≤T
x(t)

)α)]

≤ 4

√
2

πT

∫ ∞

0

exp
(

4γK2

ε1−α/2
bα − 1

2T
b2

)
db

where the first inequality follows from the formula EP [X] =
∫∞
0

P (X ≥ b) db,
combined with the elementary estimate:

P

(
sup

0≤t≤T
|Wt| ≥ b

)
≤ 2P

(
sup

0≤t≤T
Wt ≥ b

)

The second inequality follows from the classical distribution:

P

(
sup

0≤t≤T
Wt ∈ db

)
=

√
2

πT
exp

(
− b2

2T

)
.

Applying Lemma A.7 below, for A = 4γK2
ε1−α/2 , B = 1

2T yields:
∫ ∞

0

exp
(

4γ

ε1−α/2
K2b

α − 1
2T

b2

)
db

≤ exp
(

4γK2

ε1−α/2
(4γK2αT )

α
2−α ε−α/2 +

1
2T

(4γK2αT )
2

2−α ε−1

)

×
(

(4γK2αT )
1

2−α ε−1/2 +

√
2π

min
(

1
T , 1

T (2− α)
)
)
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which, after letting N = 4γK2αT and M = min
(

1
T , 1

T (2− α)
)

reduces to

exp
(

1
ε

1
T

N
2

2−α

(
1
α
− 1

2

))(
N

1
2−α ε−1/2 +

√
2π

M

)

Thus:

lim sup
ε→0

ε log

(
2

√
2

πT

∫ ∞

0

exp
(

4γ

ε1−α/2
K2b

α − 1
2T

b2

)
db

)1/2

≤ 1
2

1
T

N
2

2−α

(
1
α
− 1

2

)
< ∞

which proves the claim.

Lemma A.7 Let A,B > 0, α ∈ (0, 2) and set b =
(

αA
2B

) 1
2−α . Then the func-

tion f (b) = Abα −Bb2 satisfies the estimate
∫ ∞

0

exp (f (b)) db ≤ exp
(
Abα −Bb2

)
(

b +

√
2π

min (2B, 2B (2− α))

)
(A.6)

Proof Note that:

f ′ (b) = αAbα−1 − 2Bb

f ′′ (b) = α (α− 1) Abα−2 − 2B

f ′′′ (b) = α (α− 1) (α− 2)Abα−3

Let b be as given in the statement of the lemma and note that f ′(b) = 0 and for
b < b, f ′(b) > 0 and for b > b, f ′(b) < 0. Thus, b is the unique global maximum
of f(b). Upon inspecting the derivatives of f , it follows that f ′′(b) < −2B < 0
for α ≤ 1, and f ′′′(b) < 0 for 1 < α < 2. This implies thatfor b > b

f ′′ (b) < f ′′ (b) = −2B (2− α)

and taking the Taylor expansion of f around b:

f (b) = Abα −Bb2 +
1
2

(b− b)2 f ′′ (ξ (b))

for some ξ(b) ∈ [b, b] if b < b and ξ(b) ∈ [b, b] if b > b. Note that for b >
b, f ′′(ξ(b)) < max(−2B,−2B(2− α). Thus,
∫ ∞

0

exp
(
Abα −Bb2

)
db =

∫ b

0

exp
(
Abα −Bb2

)
db +

∫ ∞

b

exp
(
Abα −Bb2

)
db

≤ exp
(
Abα −Bb2

)(
b +

∫ ∞

b

exp
(
−1

2
(b− b)2 min (2B, 2B (2− α))

)
db

)

≤ exp
(
Abα −Bb2

)
(

b +
∫ ∞

−∞
exp

(
− (b− b)2

2 (1/ min (2B, 2B (2− α)))

)
db

)

= exp
(
Abα −Bb2

)
(

b +

√
2π

min (2B, 2B (2− α))

)
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Proof of Theorem 3.6
By Lemma A.6, Lemma A.5 can be applied to the set A = WT , which

implies i). To prove ii), set M = 1
2 in Lemma A.1 to prove the existence of a

maximizer for (3.5). Analogously, h ≡ 0, M = 1 yields a maximizer for (3.6).
It remains to prove iii). In view of i), and since

∫ T

0
(ḣt− ẋt)2dt ≥ 0, for any

h ∈ HT it follows that:

L(h) = sup
x∈HT

(
2F (x) +

1
2

∫ T

0

(ẋt − ḣt)2dt−
∫ T

0

ẋ2
t dt

)
≥ sup

x∈HT

(
2F (x)−

∫ T

0

ẋ2
t dt

)

(A.7)
which implies the inequality:

inf
h∈HT

L(h) ≥ 2F (ĥ)−
∫ T

0

˙̂
h2

t dt (A.8)

and hence ĥ is asymptotically optimal if (3.7) is satisfied. For the uniqueness
part, consider two distinct solutions h, g to (3.6). Strict convexity implies that:

L(h) ≥ 2F (g)+
1
2

∫ T

0

(ġt−ḣt)2dt−
∫ T

0

ġ2
t dt > 2F (g)−

∫ T

0

ġ2
t dt = 2F (h)−

∫ T

0

ḣ2
t dt

which contradicts the optimality of h, and uniqueness follows.
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