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Abstract. We study the problem of utility maximization from termi-
nal wealth in a semimartingale model with countably many assets.

After discussing in this context the appropriate notion of admissible
strategy, we give a characterization result for the superreplication price
of a contingent claim.

Utility maximization problems are then studied with the convex du-
ality method, and we extend finite-dimensional results to this setting.

The existence of an optimizer is proved in a suitable class of general-
ized strategies: this class has also the property that maximal utility is
the limit of maximal utilities in finite-dimensional submarkets.

Counterexamples are then given, which illustrate several phenomena
which arise in presence of infinitely many assets.

MSC: Primary: 60H30, 91B28; Secondary 60H05, 60G48

Keywords: infinite-dimensional stochastic integration, generalized in-
tegrands, utility maximization, admissible strategies, convex duality.

1. Introduction

The classical problem of utility maximization, which goes back to Arrow
and Debreu, was first studied in continuous-time by Merton [23, 24] with a
stochastic control approach.

The modern approach to this problem is based on the dual characteriza-
tion of portfolio processes, a technique developed by a number of authors
(see for example Karatzas et al. [14, 15] and the references therein), which is
commonly referred to as the convex duality method. This approach allows
to drop the assumption that asset prices are Markov processes, and extends
the basic results of Arrow and Debreu, which dictate that marginal utility
of optimal terminal wealth should be proportional to a state price density.
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sità di Pisa, via Buonarroti 2, 56127 Pisa, Italy.
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The most general results in this area are due to Kramkov and Schacher-
mayer [19, 20], and are valid for a general semimartingale models. Such a
model consists in a market with d risky assets and one riskless asset. To
simplify notation, the latter is used as numéraire, and is assumed identically
equal to 1. The prices of risky assets are modeled by a d-dimensional semi-
martingale (Si)i≤d, based on a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ).

An economic agent endowed with initial capital x invests in these assets,
so as to maximize the expected utility from terminal wealth. This problem
can be written as:

(1.1) max
H∈A

E

[
U

(
x +

∫ T

0
HtdSt

)]

where A is the class of admissible strategies, that is the set of predictable, S-
integrable processes H such that the process (

∫
HdS)t is uniformly bounded

from below.
The essential result for convex duality methods is the dual character-

ization of the superreplication price of a non-negative claim X (see, for
instance [6, 7]):

(1.2) sup
Q∈Me

EQ [X] = inf
{

x : X ≤ x +
∫ T

0
HsdSs for some H ∈ A

}
,

where Me is the set of equivalent martingale measures and the infimum in
the right-hand side is in fact a minimum.

The above equality implies a polarity between the set of claims which
are super-replicable at price 1 and the set of the densities of martingale
measure: an exact bipolar relation holds if the set of martingale densities is
replaced by its closed solid hull. This result is the main tool in the papers
by Kramkov and Schachermayer [19, 20].

In the present paper, we study the problem of utility maximization in a
financial market with countably many assets: the setting essentially corre-
sponds, in the literature on Arbitrage Pricing Theory, to a continuous-time
extension of the stationary market originally considered by Ross [26] (see
also Huberman [10]). It can also be seen as a special case of the large
financial market setting considered by Kabanov and Kramkov [12], which
consists of a sequence of finite-dimensional markets, possibly defined on dif-
ferent probability spaces. We consider a sequence of semimartingales living
on a fixed probability space, which represent the prices of risky assets, as in
the model considered by Björk and Näslund [2].

Formulating the utility maximization problem in this setting requires
three basic ingredients: i) a no-arbitrage assumption, to make optimization
nontrivial, ii) a set of admissible strategies allowing investments in infinitely
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many assets and hence iii) a definition for the infinite-dimensional stochas-
tic integral

∫ T
0 HtdSt. In addition, to employ the convex duality method, we

need iv) a dual characterization of superreplicable claims, analogous to (1.2).
It is rather clear that these issues are tightly connected. In fact, they all

concur to define the space of attainable claims, the object which ultimately
determines the solution (and the solvability) of the problem.

A theory of stochastic integration with respect to a sequence of semi-
martingales is developed in [5]: we recall the definition of integrable process
and refer to that paper for all basic results. With this definition, we can
define several classes of admissible strategies which, in some sense, general-
ize the finite-dimensional definition of admissibility. The natural question is
then to identify the class which is most appropriate for optimization prob-
lems.

To exclude arbitrage, we assume the existence of a martingale measure
(in the sense of [19]), an assumption equivalent to the condition of No Free
Lunch (NFL), introduced by Kreps [21]. It is important to notice that,
unlike the finite-dimensional case, this condition is not relaxed to No Free
Lunch with Vanishing Risk (NFLVR) (see Remark 2.2 for details).

The paper is organized as follows: in section 2 we describe our model in
detail, define the various classes of admissible strategies, and discuss their
mutual relationships. The main superreplication result is in section 3, which
contains our answer to iv). Given a proper set of admissible strategies, we
extend to infinite-dimensional markets the dual characterization of portfolio
processes. This result paves the way to the convex duality approach to
utility maximization problems, which is the treated in section 4. We prove
that utility maximization over all finite-dimensional strategies is equivalent
to maximizing utility over a suitable class of generalized strategies, and show
the existence of an optimizer within this class.

The usual properties of the optimizer will then follow from the finite-
dimensional semimartingale results of Kramkov and Schachermayer [19, 20].

2. The model

We consider the model of a financial market with countably many as-
sets: we assume, as in [2], [4], that there is one fixed market which con-
sist of a riskless asset S0, used as numéraire, with price constantly equal
to 1, and countably many risky assets, which are modeled by a sequence of
semimartingales (St)t∈[0,T ] = ((Si

t)t∈[0,T ])∞i=1, based on a filtered probability
space (Ω,F , (Ft)t∈[0,T ], P ), which satisfies the usual assumptions.

We begin our discussion with the following:

Definition 2.1.

i) A n-elementary strategy is a IRn-valued, predictable process, inte-
grable with respect to (Si)i≤n. An elementary strategy is a strategy
which is n-elementary for some n.
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ii) Let x ∈ IR+: an n-elementary strategy H is said to be x-admissible,
if (H · S)t =

∫ t
0

∑
i≤n H idSi ≥ −x a.s. An elementary strategy H is

called admissible if it is x-admissible for some x ∈ IR+.

As usual the notation H ·S denotes the stochastic integral process
∫

HdS: we
point out that, though in Definition 2.1 ii), the semimartingale S is infinite-
dimensional, the process (H ·S) is just a standard stochastic integral in IRn.

We denote by Hn the set of n-elementary admissible strategies and by H
the set of admissible elementary strategies. In other words, elementary
strategies are those involving only a finite number of assets. These strategies
should be allowed by any reasonable definition of admissibility, therefore
any no-arbitrage condition should exclude elementary arbitrage strategies.
Since in finite-dimensional markets the absence of arbitrage is equivalent to
the existence of (local) martingale measures, we obtain a set of necessary
conditions for the absence of arbitrage.

More formally, following the notation of Delbaen and Schachermayer [6],
we denote by K0,n = {(H ·S)T |H ∈ Hn} the linear space of claims attainable
with n-elementary strategies starting from zero wealth, and by C0,n = K0,n−
L0

+ (resp. Cn = C0,n ∩ L∞) the convex cones of superreplicable (resp.
bounded and superreplicable) claims. We set

K0 =
⋃

n≥1

K0,n C0 =
⋃

n≥1

C0,n C =
⋃

n≥1

Cn.

and define the following sets of (local) martingale measures:

Mn = {Q ¿ P |(H · S) is a Q-local martingale for all H ∈ Hn}
Mn

e = {Q ∈Mn |Q ∼ P}
M =

⋂

n≥1

Mn, Me =
⋂

n≥1

Mn
e .

Remark 2.1. The above definition is given in analogy to [19], and it does
not imply that each Si is a local martingale under any Q ∈ Me. In fact,
the local martingale property is recovered for any Si that is locally bounded
(see [6] fo details).

We recall the following

Definition 2.2. The process S satisfies the condition of
(EMM) Equivalent Martingale Measure if Me 6= ∅.
(NFL) No Free Lunch if C

∗ ∩ L∞+ = {0}
(NFLVR) No Free Lunch with Vanishing Risk if C ∩ L∞+ = {0}

where C
∗ and C denote the closure of C respectively in the σ(L∞, L1) topol-

ogy and in the L∞-norm.

The equivalence between conditions (EMM) and (NFL) follows from the
so-called Kreps-Yan Theorem (see for instance [6], Theorem 1.1, or [11],
Theorem 1.1). In finite-dimensional markets, also the conditions (NFL) and
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(NFLVR) are equivalent, as shown by Delbaen and Schachermayer [6]. Thus,
the absence of elementary arbitrage strategies implies that Mn

e is nonempty
for all n. A sufficient condition is of course

Assumption 2.1. The set Me is not empty.

and we shall stick to this assumption throughout the rest of this paper.

Remark 2.2. The (NFL) assumption in particular implies that the entire
market, considered as a sequence of finite-dimensional markets, is free of
asymptotic arbitrage and strong asymptotic arbitrage opportunities of both
the first and second kind. See Kabanov and Kramkov [12, 13] and Klein and
Schachermayer [17] for details. We also recall that the condition of No As-
ymptotic Arbitrage of the first kind is equivalent to the (NFLVR) condition.
However, the equivalence between (NFL) and (NFLVR) may not necessarily
hold in the case of infinitely many assets, and we refer to Klein [16] (Ex-
ample 5.2) for a counterexample in the context of a general large financial
market. This counterexample involves a sequence of different probability
spaces, and therefore does not apply to our setting, but it indicates that the
(NFL) condition is a safer choice in presence of infinitely many assets.

As already pointed out in [2], [4], the class H of strategies is not satis-
factory, since in a large market we should admit the (theoretical) possibility
of investing in infinitely many assets. In particular, an economic agent may
invest istantaneously in a finite number of assets, but the global strategy
may involve all the assets in the market. This idea leads to the notion of
“generalized” strategy (see for instance [4]), as the limit of strategies which
are pointwise finite-dimensional.

Also, the space C0 in general fails to be closed in any reasonable sense,
ad therefore is not suitable for optimization problems. So it needs to be
enlarged in some sense, by adding some proper “limit” claims.

To this aim, it is natural to introduce a definition of stochastic integral
with respect to a sequence of semimartingales.

Such a definition has been introduced in [5], to which we refer for all details
and main results. Here, we recall the main definitions. For simplicity, we
denote by E = IRIN the set of all real sequences and by E′ its topological
dual, which is the set of linear combination of Dirac measures on IN. We
call simple integrand a E′-valued process of the form H =

∑
i≤n hiδi, where,

as usual, δi denotes the Dirac delta at point i, and hi are bounded and
predictable processes. For a simple integrand, it is naturally defined the
stochastic integral with respect to S, as

∫
HdS =

∫ ∑

i≤n

hidSi
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which trivially reduces to a finite-dimensional stochastic integral. This cor-
responds, in financial terms, to the definition of elementary strategies and
portfolios, as recalled in Definition 2.1 ii)

A generalized integrand will be obtained as the limit, in some sense to
be specified, of simple integrands, as well as a generalized strategy is the
limit of finite-dimensional strategies. With the observation that a simple
integrand takes values in the set of continuous operators on E, the results
by Métivier and Pistone on stochastic integration for Hilbert-valued martin-
gales [25] suggest that the space of integrands may contain processes with
values in the set of not-necessarily bounded operators on E, which satisfy
a proper measurability condition. We consider the semimartingale topol-
ogy introduced by Emery [8] on the space of all real semimartingales (see
also [22]).

Definition 2.3.
i) A process H with values in the set of non necessarily bounded op-

erators on E is predictable if there exists a sequence (Hn) of simple
processes, such that

H = lim
n→∞Hn,

in the sense that for all x in the domain of H, the sequence Hn(x)
converges to H(x), as n tends to ∞.

ii) A predictable process H with values in the set of non necessarily
bounded operators on E is integrable with respect to S if there exists
a sequence (Hn) of simple integrands such that Hn converges to H
pointwise and the sequence of semimartingales (Hn ·X) converges
to a semimartingale Y in the semimartingale topology.
In this case, we define

∫
HdS = H · S = Y.

Of course, Definition 2.3 ii) makes sense if we can prove that the limit
defined above is uniquely determined, namely that it is independent of the
approximating sequence: the proof of this fact is provided in [5] (Proposi-
tion 5.1).

Definition 2.4. A generalized strategy is a process H which is integrable
with respect to the semimartingale S.

As in the finite-dimensional market, a self-financing portfolio is described
by a pair (x,H) where the constant x is the initial value of the portfolio and
H a generalized strategy. The value process of such a portfolio is defined by
the formula

Vt = x +
∫ t

0
HsdSs

(see [4], for a more detailed discussion). As we seek to extend the definition
of admissibility from elementary to general strategies, we have at least four
seemingly reasonable possibilities:
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Definition 2.5. Given x > 0, consider the following spaces of generalized
strategies:

i) H ∈ A1
x iff there exists a sequence {Hn}∞n=1, such that Hn ∈ Hn

and is x-admissible, and (Hn · S) → (H · S) in the semimartingale
topology.

ii) H ∈ A2
x iff there exists a sequence {Hn}∞n=1 and a constant c > 0,

such that Hn ∈ Hn and is (x + c)-admissible, x + (H · S)t ≥ 0 a.s.,
and (Hn · S) → (H · S) in the semimartingale topology.

iii) H ∈ A3
x iff x + (H · S) is a nonnegative Q-supermartingale for all

Q ∈Me.
iv) H ∈ A4

x iff x + (H · S)t ≥ 0 a.s. for all t.

Let us comment on the economic interpretation of these definitions. The
set A1

x contains those strategies which can be approximated by elementary
strategies, each of them admissible with capital x. The set A2

x somewhat
relaxes this requirement, allowing approximating strategies to remain admis-
sible with a possibly higher capital x + c, while keeping the limit strategy
x-admissible. The definition of the set A3

x is given in the spirit of optional
decomposition theorems (see [9, 18]), and is the most convenient for convex
duality methods, but it lacks a clear economic meaning. Finally, A4

x con-
tains all generalized strategies which never drop below zero, without any
condition on their elementary approximations.

We have the following inclusions:

A1
x ⊂ A2

x ⊂ A3
x ⊂ A4

x

The first and the last ones are trivial, while the middle inclusion is estab-
lished as in the finite-dimensional case:

Lemma 2.1. Let H ∈ A2
x be an admissible strategy. Then H · S is a

supermartingale for all Q which make all assets {Si}∞i=1 local martingales.

Proof. Let Hn be an approximating sequence, so that Hn · S ≥ −(x +
c) and Hn · S converges to H · S in the semimartingale topology. This
topology implies convergence in probability, and up to a subsequence, almost
surely. The supermartingale property of H ·S then follows by the the usual
application of Fatou’s Lemma. ¤

With a finite number of assets, all above classes coincide with the usual
set of admissible strategies. In general, this is not the case, as the set A4

x

may strictly contain A3
x. As we are looking for a reasonable class of admis-

sible strategies, we need to understand the properties of different classes of
strategies, and compare them to our expectations.

We expect that a good definition of admissibility leads to the following
properties:

i) Assumption 2.1 excludes arbitrage opportunities.
ii) Claims superreplicable with a fixed capital admit a dual characteri-

zation.
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iii) The maximum expected utility on the entire market is the limit of
maximum expected utility on finite-dimensional submarkets.

In some sense, this paper aims at finding such a definition, and checking
that it satisfies the desired properties.

It is immediately seen that under assumption 2.1 the classes A1
x,A2

x and
A3

x are free of arbitrage opportunities, while the class A4
x poses a more deli-

cate question. One would like to argue that, if S is a infinitely-dimensional
local martingale under Q ∈ Me, H is a S-integrable process, and H · S is
bounded from below, then H · S is a local martingale, and hence a super-
martingale: this is a well-known result in the finite-dimensional setting, due
to Ansel and Stricker [1].

However, it turns out that with infinite dimensions the local martingale
property may be lost even for stochastic integrals bounded from below.

Example 6.2 in [5] in a continuous-time setting and Example 5.1 below in
the elementary case of one-period models, show that arbitrage opportunities
may indeed appear in the class A4

x, even if Assumption 2.1 holds.

Remark 2.3. As already observed in [5], if every Si is a continuous semi-
martingale, the result by Ansel and Stricker holds even in the infinite-
dimensional setting: it is a consequence of the closedness of the set of contin-
uous local martingales in the semimartingale topology ([22], Theorem IV.5).

In this case, A4
x = A3

x = A2
x. Indeed, let H ∈ A4

x and let Hn be a sequence
of simple integrands such that Hn · S converges to H · S. For fixed c > 0,
the sequence of stopping times

Tn = inf
{

t :
∫ t

0
Hn

s dSs < −x− c

}
.

is such that limn P(Tn < T ) = 0. So, possibly up to a subsequence, we
can assume that

∑
n P(Tn < T ) < ∞. The sequence of stopping times

Sn = infm≥n Tm converges to T a.s. Hence, defining H̃n = 1[0,Sn]H
n, we

find a sequence of simple integrands such that H̃n · S ≥ −x− c and H̃n · S
converges to H · S, which proves that H ∈ A2

x.
In fact, it can be proved that under Assumption 2.1, A1

x = A4
x as well, but

the proof is rather technical. We omit it, since Proposition 4.1 below makes
it unnecessary to our aims.

3. Dual characterization of superreplicable claims

By the basic superreplication result (see, for instance [6], [7]) in finite-di-
mensional markets, we have that, for any X ∈ L0

+ and x > 0:

(3.1) sup
Q∈Mn

e

EQ [X] ≤ x ⇐⇒ X ≤ x + (H · S)T for some H ∈ Hn.
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and we denote by πn(X) the superreplication price of X using the first n
securities:

πn(X) = sup
Q∈Mn

e

EQ [X] .

As we consider the entire market, we have two possible analogues for the
left-hand side in (3.1):

π∞(X) = lim
n

πn(X) = inf
n≥1

sup
Q∈Mn

e

EQ [X]

π(X) = sup
Q∈Me

EQ [X] .

It is clear from the definition that the following inequality holds:

π(x) ≤ π∞(x)

Examples 5.3 and 5.4 below show that, in some cases, π(x) < π∞(x).
A simple observation is that, since πn is the superreplication price using

the first n securities, then π∞(X) is the superreplication price obtained using
only elementary strategies, as we prove in the following:

Lemma 3.1. Let X ∈ L0
+. We have that:

π∞(X) = inf{x |X ≤ x + (H · S)T , for some H ∈ H}
Proof. The right-hand side is clearly smaller than π∞(X). The reverse in-
equality is obtained as follows: for any ε > 0, there exists some n ∈ IN
such that πn(X) < π∞(X) + ε, and hence some H ∈ Hn such that X ≤
πn(X) + (H · S)T . The claim trivially follows. ¤

We point out that, in general, π∞(X) is an infimum and not a minimum.
It is now natural to ask if π(X) can be characterized in a similar way, using
a proper class of admissible generalized strategies in the right-hand side
in (3.1). In fact, the following result holds:

Theorem 3.2. Let X ∈ L0
+ and x > 0. The following conditions are

equivalent:
i) supQ∈Me

EQ[X] ≤ x;
ii) There exists H ∈ A1

x, such that

X ≤ x + (H · S)T .

In order to prove Theorem 3.2, we need first to introduce some notation
and preliminary results. For a set A ⊂ L0, we denote by A

p its closure in
the space L0, endowed with convergence in probability. Following Kramkov
and Schachermayer [19], we introduce the sets

Cn = {X ∈ L0
+ : X ≤ 1 + (H · S)T , H ∈ Hn} = 1 + C0,n,

and C =
⋃

n≥1 Cn. Recall that the polar of a set A ⊂ L0
+ is defined by:

A◦ = {f ∈ L0
+ : E [fg] ≤ 1 for all g ∈ A}.
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Next lemma is quite standard: we include its short proof for completeness,
since it does not follow directly from analogous results with finitely many
assets.

Lemma 3.3. Let X ∈ L0
+. Then

sup
Q∈Me

EQ[X] = sup
f∈C◦

E[fX]

Proof. Note first that Me ⊂ C◦: in fact, for any admissible H ∈ H, we have
that (H · S) is a supermartingale, and hence EQ[1 + (H · S)T ] ≤ 1. This
proves one inequality.

Viceversa, suppose that f ∈ C◦. Since 1 ∈ C and −L∞+ ⊂ C, it follows
that f ∈ L1

+ and that E [f ] ≤ 1. Let {fn}∞n=1 be a maximizing sequence for
the right-hand side. Up to a rescaling, which only increases the expectation,
we can assume that E [fn] = 1 for all n. By assumption 2.1, we can consider
Q ∈ Me, and denote by g = dQ

dP its density. We define a new sequence
of measures {Qn}∞n=1, defined by dQn

dP = (1 − 1
n)fn + 1

ng. It is clear that
Qn ∈Me for all n, and that limn→∞EQn [X] = limn→∞E[fnX]. ¤

The following result holds under the weaker assumption that condition
(NFLVR) is satisfied by the market:

Lemma 3.4. Let (fn) be a sequence of random variables, such that −1 ≤
fn ≤ (Hn · S)T , where Hn are admissible elementary strategies. Assume
that fn converges almost surely to f . Then, there exists a process H ∈ A1

1

such that f ≤ (H · S)T .

Proof. The proof is essentially contained in Section 4 in [6] (see also [11],
section 2 and 3, for an alternative proof). We only give a sketch of the
main steps. Let us start by observing that Mn

e 6= ∅, since (NFLVR) holds
also in the market based on the first n securities. It follows easily that
(Hn · S)t ≥ −1 for all t ≤ T , namely, Hn is 1-admissible. Let us denote by
K1

0 = {(H · S)T : H ∈ H,H 1-admissible}. By Lemma A1.1 in [6], there
exists a sequence of convex combinations (H̃n) ∈ conv(Hn,Hn+1, . . .), such
that (H̃n ·S)T converges almost surely. Notice that H̃n are still 1-admissible
elementary strategies. It follows that f ≤ g, where g is some element in
K1

0

p
, hence the set Df = {g ∈ K1

0

p
: g ≥ f a.s.} is not empty. Since K1

0 is
bounded in L0 because of the (NFLVR) assumption (see [6], Corollary 3.4
or [11], Lemma 2.2), it follows that D is also bounded. Lemma 4.3 in [6]
implies that Df contains a maximal element, denoted by f0, which can be
written in the form f0 = limn(Ln ·S)T , where Ln are 1-admissible elementary
strategies and the convergence is in probability. It can be easily checked
that the set of elementary strategies which we are considering satisfies the
hypotheses of stability with respect to the operations carried out by Delbaen
and Schachermayer in section 4 of [6], or by Kabanov in [11]. So, their
results can be applied: we refer in particular to Lemmas 4.5, 4.10 and 4.11
in [6] (also the results in section 2 and 3 in [11]). It follows that there exist
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(L̃n) ∈ conv(Ln, Ln+1, . . .) such that the sequence of semimartingales (L̃n ·S)
is a Cauchy sequence in the semimartingale topology.

At this point, the main difference between the case considered in [6],
[11] and ours, comes out. In [6], [11], since a finite-dimensional market is
considered, all strategies are 1-admissible with respect to a d-dimensional
semimartingale S = (Si)i≤d, where d is fixed, and (L̃n ·S) is a standard sto-
chastic integral in IRd. In this case, it can be applied a result by Mémin ([22],
Corollay III.4), which claims that there exists a predictable S-integrable pro-
cess L, such that (L̃n · S) converges to L · S.

In our framework, we can still represent the limit of (L̃n ·S) as a stochastic
integral, but, in this case, we need a generalized strategy: by Theorem 5.2
in [5], there exists a generalized strategy H such that (L̃n · S) converges
to H · S. It is evident that H ∈ A1

1. ¤

The previous lemma is useful in order to characterize the closure of C.
Lemma 3.5. The following result holds:

Cp = {X ∈ L0
+ : X ≤ 1 + (H · S)T , H ∈ A1

1}

Proof. Let (Xn)n be a sequence in C, converging in probability to a random
variable X. Up to a subsequence, we can assume that Xn converges almost
surely to X. Then, Lemma 3.4 applied to the sequence (Xn− 1) shows that
there exists a generalized strategy H ∈ A1

1 such that X ≤ 1 + (H · S)T .
Conversely, assume that X ≤ Y = 1 + (H · S)T for some H ∈ A1

1. The
random variable Y belongs to Cp, which is solid (we recall that a subset
A ⊂ L0

+ is called solid if g ∈ A, h ∈ L0 and 0 ≤ h ≤ g implies that h ∈ A).
It follows that X ∈ Cp. ¤

We are now ready to prove Theorem 3.2

Proof of Theorem 3.2. We can assume, without loss of generality, that x =
1. By Lemma 3.3, condition i) amounts to say that X belongs to C◦◦,
which is the bipolar of C. By the bipolar theorem (in the version due to
Brannath and Schachermayer [3]), C◦◦ is the closed convex solid hull of C in
L0

+. Since C is convex and solid, C◦◦ is just the closure of C in L0. Then, the
equivalence between i) and ii) follows from the characterization of Cp given
in Lemma 3.5 ¤

Remark 3.1. It is not difficult to check, using the definition of the set A1
x

and Lemma 3.4, that condition ii) is equivalent to the following

ii)′ There exists a sequence {Hn}∞n=1, such that Hn ∈ Hn and is x-
admissible, and

X ≤ x + P– lim
n→∞(Hn · S)T .
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We recall indeed that convergence in the semimartingale topology implies
convergence in probability of the terminal values. Condition ii)′ makes more
sense from a financial point of view, since it involves “real” (that is, finite-
dimensional) strategies. Hovewer, the statement of Theorem 3.2 gives us a
relation analogous to (1.2), which allows us to immediately apply the already
existing results on utility maximization (see next section).

4. Utility Maximization

We consider the problem of utility maximization: as in [19], let U be
a utility function such that U(x) = −∞ for x < ∞ and saitysfying the
so-called Inada conditions. As usual, V will denote the conjugate function
of U , namely

V (y) = sup
x>0

[U(x)− xy]

for y > 0. It is well-known that V satisfies the inversion formula

U(x) = inf
y>0

[V (y) + xy]

(see [19] for further details). For all n ≥ 1, we define the problem

(4.1) un(x) = sup
H∈Hn

IE
[
U

(
x +

∫ T

0
HsdSs

)]
= sup

X∈xCn

IE [U(X)]

We denote by Dn the polar of Cn: this set was characterized by Kramkov
and Schachermayer as the closed, convex, solid hull of the set Mn

e (see[19]
for details). The dual problem of (4.1) is then defined by:

(4.2) vn(y) = inf
Y ∈Dn

IE [V (yY )] .

If we assume that un(x) < ∞ for all x, the function vn(y) is the convex
conjugate of un(x) ([19], Theorem 2.1).

Let us define

u∞(x) = lim
n

un(x) v∞(y) = lim
n

vn(y);

clearly, u∞(x) = supH∈H IE
[
U

(
x +

∫ T
0 HsdSs

)]
, that is, u∞(x) is the value

function of the utility maximization problem over all the elementary strate-
gies. To eliminate trivial cases, we assume that u∞(x0) < ∞ for some
x0 > 0. Since u∞ is is increasing and concave (as limit of an increasing
sequence of increasing and concave functions), it follows that u∞(x) < ∞
for all x > 0.
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We wish now to consider the problem of maximizing expected utility
over a class of generalized strategies: we can define three different prob-
lems according to the three classes Ai

x, i = 1, 2, 3. However, an important
consequence of Theorem 3.2 is the following:

Proposition 4.1. We have that:

Cp = {X ∈ L0
+ : X ≤ x + (H · S)T , H ∈ A3

x}
Proof. Let H ∈ A3

x. Then it clearly satisfies i) in Theorem 3.2, and therefore
(H ·S)T is dominated by some (K ·S)T , with K ∈ A1

x. The reverse inclusion
is a trivial consequence of Lemma 3.5. ¤

The above proposition implies that, without loss of generality, we may
define over the class A1 both the utility maximization problem:

(4.3) max
H∈A1

x

E [U (x + (H · S)T )]

and its value function:

u(x) = sup
H∈A1

x

E [U (x + (H · S)T )]

Since C =
⋃

n≥1 Cn, it is easy to check that C◦ =
⋂

n≥1Dn = D: then, the
dual value function is defined as follows:

(4.4) v(y) = inf
f∈D

E [V (yf)]

The inequalities u(x) ≥ u∞(x) and v(y) ≥ v∞(y) are evident: in fact,
we will prove that equality holds in both cases. Let us start by proving the
second one:

Lemma 4.2. v(y) = v∞(y), for all y > 0.

Proof. Denote by v∞(y) = supn vn(y). We have to show that v(y) ≤ v∞(y),
as the reverse inequality is trivial. Let Yn ∈ Dn be such that

lim
n→∞E [V (yYn)] = v∞(y)

By Lemma A1.1 in [6] (see also Lemma 3.3 in [19]), there exists a sequence
(Zn) ∈ conv(Yn, Yn+1, . . .), which converges almost surely: note that Zn ∈
Dn and therefore Z = limn Zn =∈ ∩∞n=1Dn = D. By the convexity of V , it
is easy to verify that

lim
n→∞E [V (yZn)] = v∞(y)

Finally, Lemma 3.4 in [19] implies that the sequence (V −(yZn)) is uni-
formly integrable, hence

v(y) ≤ E [V (yZ)] ≤ lim inf
n→∞ E [V (yZn)] = v∞(y)

¤



14 M. DE DONNO, P. GUASONI, AND M. PRATELLI

Lemma 4.3. There exists y0 such that v(y) < ∞ for y > y0.

Proof. For all n, the following relation holds for y > 0:

vn(y) = sup
x>0

(un(x)− xy)

(see [19], Theorem 3.1), hence

(4.5) v(y) ≤ sup
x>0

(u∞(x)− xy).

Since u∞ is concave, the thesis easily follows. ¤

Now, we wish to prove that u(x) = u∞(x). Consider first the case when
U(x) ≥ −M for all x ≥ 0: each element of C is limit of a sequence of elements
in ∪nCn; then, the claimed equality is a consequence of Fatou’s lemma. In
the case when limx→0+ U(x) = −∞, this argument does not work. It is
evident that the equality holds when u∞(x) = ∞. If we assume, as above,
that u∞(x) < ∞ for all x, then, a proof of this relation can be obtained by
exploiting the duality between u and v.

Proposition 4.4. u∞(x) = u(x), for all x > 0.

Proof. Let X ∈ xCp
, Y ∈ yD: the inequality U(X) ≤ V (Y ) + XY implies,

by a simple integration, that u(x) ≤ v(y) + xy for all y > 0, namely,

u(x) ≤ inf
y>0

(v(y) + xy).

In particular, it follows that u(x) < ∞ for all x > 0. We can then apply
Theorem 3.1 in [19], to prove that u and v are in duality and v is the convex
conjugate of u: precisely,

u(x) = inf
y>0

(v(y) + xy)

v(y) = sup
x>0

(u(x)− xy).

Denote by ṽ the convex conjugate of u∞. Since (4.5) holds, we have that
ṽ(y) ≥ v(y) for all y. So, we obtain u∞(x) ≥ u(x), which completes the
proof. ¤

At this point, using the argument of the proof of Lemma 3.5 in [19],
with hardly any modification, we can prove that for all y which satisfy the
condition v(y) < ∞, there exists a minimizing element for the problem (4.4),
that is, there exists ĥ(y) such that

v(y) = IE
[
V (yĥ(y))

]
.
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However, there does not necessarily exist an optimizer for the utility max-
imization problem (4.3). From the results of [20], we obtain that, in order
to prove the existence of a maximizer, we need the further hypothesis that

Assumption 4.1. v(y) < ∞ for all y > 0.

We point out that this condition is implied by the condition on the asymp-
totic behaviour of the elasticity of U :

AE(U) = lim sup
x→∞

xU ′(x)
U(x)

< 1

(see [19, 20] for details). The most general results under the Assumption
4.1 are resumed in the next theorem, which follows from the results in [20]
and from what we have already proved.

Theorem 4.5. If Assumptions 2.1 and 4.1 hold true, then we have that:
i) The value functions u and v are continuously differentiable, increas-

ing and strictly concave on (0,∞) and satisfy Inada conditions.
ii) The optimal solution X̂(x) = (Ĥ(x) · S)T to (4.3) exists for any

x > 0, and is unique in the sense that the terminal wealth X̂(x) is
unique. In addition, if y = u′(x), we have that U ′(X̂T (x)) = ŶT (y),
where Ŷ (y) is the optimal solution to (4.4).

iii) The function v satisfies the representation:

v(y) = inf
Q∈Me

E

[
V

(
y
dQ

dP

)]

iv) The following relation holds:

u(x) = sup
H∈H

E [U(x + (H · S)T )]

5. (Counter)examples

In this section we illustrate with examples some phenomena which may
arise in presence of infinitely many assets. To stress that these are basic
issues, as opposed to so-called “mathematical pathologies”, in most cases
we shall deal with elementary, one-step Arrow-Debreu models. It should
be noticed, however, that such models have jumps, and in fact some of
the couterexamples disappear in the case of continuous processes (see also
Remark 2.3).

The first example shows a one-period model with infinitely many assets,
with the following feature: if the agent is allowed to invest in a finite number
of securities, his optimal choice is not to invest at all. On the other hand,
were he allowed to invest in all available assets simultaneously, the optimal
choice would be to invest in the first asset, and hedge some of the risk by
investing in all other assets. This phenomenon arises for a simple reason:
all assets except the first one are martingales, that is bad investments (by
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themselves). On the contrary, the first asset offers a positive return, but it
has a large downside risk, which cannot reasonably hedged (i.e. turned into
an admissible strategy) with finitely many securities.

Example 5.1. Consider a one-period model (i.e. T = {0, 1}) on the count-
able probability space Ω = {ωn}∞n=0. F0 and F1 are respectively the trivial
and the discrete σ-algebra on Ω. The probability and the assets prices at the
final time 1 are defined by the following table, where α ∈ (0, 1) and β > 0.

ω ω0 ω1 ω2 ω3 . . . ωn

P (ω) 1− α α2−1 α2−2 α2−3 . . . α2−n

S1
1 −1 β β2 β3 . . . βn

S2
1 0 0 β2 0 . . . 0

S3
1 0 0 0 β3 . . . 0
...

...
...

...
. . .

...
...

Sn
1 0 0 0 0 . . . βn

In other words, P (ω0) = 1 − α and P (ωn) = α2−n for n ≥ 1. For the
first asset, S1

1(ω0) = −1 and S1
1(ωk) = βk for n ≥ 2. For all other assets,

Sn
1 (ωn) = βn and Sn

1 (ωk) = 0 for all k 6= n. Note that by choosing α small,
we can assume that E

[
S1

1

]
< 0.

Finally, we set initial prices as follows: S1
0 = 0 and Sn

0 = α2−nβn for
n ≥ 2. By choosing β < 2, we assume that Sn

0 decreases to zero. These
choices imply that S1

1 is a supermartingale, while Sn
0 are martingales for

n ≥ 2.
Note that this market is arbitrage-free, as one can also make S1 a mar-

tingale, by adjusting P (ω0) and P (ω1), which does not affect the martingale
property of {Sn}n≥2.

If we consider the strategies based on the first n assets, the solution to
the utility maximization problem is trivial. In fact, the investment on the
first asset must be nonnegative, otherwise the strategy is not admissible (as
S1

1 is unbounded from above). On the other hand, S1 is a supermartingale,
therefore the optimal choice is a null position. Since all other assets are
martingales, it is also optimal not to invest in any of them. It follows that
the maximum utility is given by U(x), where x is the initial capital of the
agent.

However, if we allow the agent to invest on all the securities, this situation
changes. Consider the strategy of short-selling 1 unit of S1, and buying 1
unit of each of the securities {Sn}n≥2. This strategy is clearly admissible,
as its support is {−β, 1}, its cost is given by

∑
n=1 α2−nβn = αβ

2−β , and its
expected valued is 1− α− αβ(1

2 + 1
2−β ).

Again, if α and β are small enough, adding to any initial capital x some
small multiple of this strategy will certainly increase expected utility (as
long as it is smooth enough that the first-order Taylor expansion holds).
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This shows that the maximum utility is strictly greater than U(x), and
therefore it is not the limit of the finite-dimensional maxima, which are all
U(x).

The next example, which is a minor variation of the previous one, shows
that if too many strategies are allowed, not only utility maximization does
not pass to the limit, but even arbitrage can arise.

Example 5.2. In the previous example, set P (ω0) = 0, and renormalize
the other probabilities accordingly. All assets Sn, with n > 1, can be made
martingales rescaling prices, while the first S1 loses its downside risk, and
cannot become a martingale at price zero.

In fact, the same strategy as in the previous example delivers β with
certainty, and costs only a multiple of αβ

2−β , which can be made less than β

by choosing α small enough. It follows that performing this strategy after
borrowing its cost from the riskless asset delivers an arbitrage.

The next two examples show that, with infinitely many assets, the super-
replication prices π(X) and π∞(X) may be different.

Example 5.3. Consider a one-period model (i.e. T = {0, 1}) on the count-
able probability space Ω = {ωn}∞n=0. F0 and F1 are respectively the trivial
and the discrete σ-algebra on Ω. The probability and the assets prices at the
final time 1 are defined by the following table, where α ∈ (0, 1) and β > 0.

ω ω0 ω1 ω2 ω3 . . . ωn

P (ω) 1− α α2−1 α2−2 α2−3 . . . α2−n

S1
1 1 1 0 0 . . . 0

S2
1 1 0 2 0 . . . 0

S3
1 1 0 0 4 . . . 0
...

...
...

...
. . .

...
...

Sn
1 1 0 0 0 . . . 2n

In practice, Sn
1 (ω0) = 1, Sn

1 (ωn) = 2n and Sn
1 (ωk) = 0 for all k 6∈ {0, n}.

We set the inital price of all assets to some constant c > 0.
Note that this market is complete: to see this, it is sufficient to show that

all Arrow-Debreu securities Xj : ωi 7→ δij are replicable. For k ≥ 2, we
have trivially Xk = 2−kSk, hence it is sufficient to replicate X0 (X1 will
be obtained from the riskless asset by difference). Consider the strategy of
borrowing one unit of the riskless asset, and holding {θn}∞n=1 units of risky
assets. If we set θ1 = 1 and θn = 2−n, the payoff of this strategy will be
exactly X0.

Let us now consider the cost of superreplicating the claim X0. If we have
only a finite number of assets at our disposal, it is intuitively clear that this
cost will be at least c. This can be seen as follows: let Q be a martingale
measure for all Sn, and denote by qn = Q(ωn). In the market with the first
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n securities, we have the system of n equations in n + 1 unknowns:

q0 + q1 = c

q0 + 2q2 = c

...
q0 + 2nqn = c

which has 1-dimensional set of solutions:

q0 ∈ (0, c)

qk = 2−k(c− q0) 1 ≤ k ≤ n

hence the supremum of q0 (the price of X0 under Q) is clearly c.
Note that for finite n the condition

∑∞
k=1 qk = 1 remains vacuous, but

this is no longer true when n = ∞. In this case, the only martingale measure
Q is given by:

q0 = 2c− 1

qk = 2−k(c− q0) k ≥ 1

and 2c− 1 < c whenever c < 1.

Example 5.4. Assume for simplicity that T = 1 and that the price pro-
cesses evolve according to the following dynamics:

dSi
t = Si

t−
(
αidt + dN̂t + dW i

t

)

where (W i)i≥1 is a sequence of independent Wiener processes and N̂t = Nt−t
is a compensated Poisson process with intensity 1 (N is the Poisson process),
independent of W i for all i.
We assume that (Ft)t≤1 is the filtration generated by the price processes,
hence by {(W i)i≥1, N}. It is well-known that in this case, every local mar-
tingale L has necessarily the form

(5.1) Lt = L0 +
∫ t

0
ksdN̂s +

∑

i≥1

∫ t

0
hi

sdW i
s ,

where k, (hi)i≥1 are predictable processes and

(5.2)
∫ 1

0
|ks|ds +

∑

i≥1

∫ 1

0
(hi

s)
2ds < ∞ a.s.

Let Q be a probability measure equivalent to P . Then, its density has the
form dQ/dP = E(L1) (we recall that E denotes the stochastic exponential),
where L has the form (5.1), with L0 = 0; furthermore, ks > −1 to ensure
that E(L1) > 0 and L is such that E(Lt) is a uniformly integrable martingale.
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By Girsanov’s theorem, it follows that the process W i
t −

∫ t
0 hi

sds is a
Q-Wiener process, while the process N̂t −

∫ t
0 ksds = Nt −

∫ t
0 (1 + ks)ds is a

Q-martingale (namely
∫ t
0 (1+ks)ds is the Q-compensator of the point process

N).
Since (Si)i≤n is locally bounded, we have that Q ∈ Mn

e if and only if
(Si)i≤n is a Q-local martingale. This occurs if and only if

hi
t = αi + kt

for all i ≤ n. A necessary condition for Assumption 2.1 to hold is that
the above equality is satisfied for all i ≥ 1. Then, by condition (5.2), it
must be

∑
i α

2
i < ∞, hi

t = αi for all i and, necessarily kt ≡ 0; namely, there
exists a unique equivalent martingale measure Q (we notice that the uniform
integrability of the density E(− ∫ ∑

j αjdW j
t ) is a consequence of Novikov

condition). Conversely, on the n-dimensional market, there are infinitely
many equivalent martingale measures. In particular, the point process N
may have any intensity, and, possibly, even a stochastic compensator.

Consider the claim X = 1I{N1=0}. In the large market, N1 is a Poisson
random variable with intensity 1, hence w = EQ [X] = e−1. In the n-market,
N1 may be a Poisson random variable with any intensity (or, possibly, a
random variable with more general distribution): it is evident, then, that
w∞ = 1 > e−1.
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