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Abstract

A version of the fundamental theorem of asset pricing is proved for
continuous asset prices with small proportional transaction costs.

Equivalence is established between: (a) the absence of arbitrage
with general strategies for arbitrarily small transaction costs ε > 0,
(b) the absence of free lunches with bounded risk for arbitrarily small
transaction costs ε > 0, and (c) the existence of ε-consistent price
systems – the analogue of martingale measures under transaction costs
– for arbitrarily small ε > 0.

The proof proceeds through an explicit construction, as opposed
to the usual separation arguments. The paper concludes comparing
numéraire-free and numéraire-based notions of admissibility, and the
corresponding martingale and local martingale properties for consis-
tent price systems.
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1 Introduction

The equivalence between (a suitable notion of) absence of arbitrage and the
existence of pricing functionals (e.g. equivalent martingale measures) is at
the cornerstone of asset pricing. The theory of frictionless markets goes
back to the seminal papers of Harrison, Kreps and Pliska ([HK79], [HP81],
[Kr 81]), and after 25 years of research the situation is now well-understood,
see e.g. [DS 06] for an overview.

For transaction costs, the theory was initiated by E. Jouini and H. Kallal
([JK 95a], compare also to [DN90], [CK96]). A satisfactory analogue to
the “fundamental theorem of asset pricing” was obtained in [KRS02] and
[S 04] for discrete-time models. The only treatment involving continuous-
time models has been [JK95a] up to now. This pioneering work used an
L2 setting and a strong concept of no free lunch to obtain the equivalence
between absence of arbitrage and the existence of dual variables (consistent
price systems in the terminology of [S 04]).

The present paper relates, in the continuous-time setting, a notion of
absence of arbitrage admitting a clear-cut economic interpretation to the ex-
istence of consistent price systems, which correspond to equivalent martingale
measures in the frictionless case.

To motivate our approach, consider the explicit example of geometric
fractional Brownian motion with Hurst parameter H 6= 1/2. In [G 06] it was
shown that this model is arbitrage-free under arbitrarily small (proportional)
transaction costs. Contrast this result to the fact that — except in the
Brownian case — fractional Brownian motion is not a semi-martingale. Thus,
[DS 94, Theorem 7.2] implies the existence of arbitrage opportunities in the
absence of transaction costs (more precisely: a free lunch with vanishing risk
with respect to simple integrands; compare also to [R 97], [Ch]).

It was made clear in [GRS07] that the only feature of geometric fractional
Brownian motion (St)0≤t≤T relevant to this result is its conditionally full sup-
port in the space of trajectories C+

S0
[0, T ], i.e. in the set of continuous positive

functions on [0, T ] starting at S0. For the class of processes with conditional
full support it is shown in [GRS07] that, for arbitrarily small transaction
costs, there exist consistent price systems (see Definition 1.4 below), which
implies in particular the absence of arbitrage.

Hence, for continuous processes, the property of conditional full support
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is a sufficient condition for the existence of consistent price systems for arbi-
trarily small transaction costs (but it is not necessary, see the example in the
Appendix). In this paper we address the question to identify necessary and
sufficient conditions, i.e., to prove a version of the fundamental theorem of
asset pricing for arbitrarily small transaction costs. For the present setting of
continuous price processes we obtain precise characterisations in Theorems
1.11 and 3.17 below.

The financial market we consider consists of a risk-free asset B, normal-
ized to Bt ≡ 1, and a risky asset S, based on a filtered probability space
(Ω,F , (Ft)0≤t≤T ,P) satisfying the usual conditions of right continuity and
saturatedness. F0 is also assumed trivial. Throughout the paper we make
the following:

Assumption 1.1 (St)0≤t≤T is adapted to Ft, with continuous and strictly
positive paths.

We begin with the precise notions of arbitrage, free lunch, and pricing
systems in the present context. First we introduce the very simple concept
of obvious arbitrage:

Definition 1.2 S satisfying Assumption 1.1 allows for an obvious arbitrage
if there are α > 0 and [0, T ] ∪ {∞}-valued stopping times σ ≤ τ such that
P[σ < ∞] > 0 and

Sτ/Sσ ≥ 1 + α on {σ < ∞}, (1)

or Sτ/Sσ ≤ (1 + α)−1 on {σ < ∞}. (2)

If (1) is satisfied it is indeed rather obvious how to make an arbitrage
profit using a buy and hold strategy: at time σ one goes long in the stock
S and waits until time τ to clear the position again. In case of (2) one
goes short rather than long. Note that we necessarily have τ < ∞ a.s. on
{σ < ∞} in order for (1) or (2) to be satisfied.

The crucial observation is that such an arbitrage opportunity persists,
even with sufficiently small (i.e. ε < α) proportional transaction costs. The
weak assumption of “no obvious arbitrage” (NOA) already leads to a pre-
liminary “local” result.

Theorem 1.3 Let S satisfy Assumption 1.1 and (NOA). Then there exists
a sequence (τn)∞n=1 of [0, T ]-valued stopping times, strictly increasing to T ,
such that each stopped process Sτn admits an ε-consistent price systems, for
all ε > 0. Conversely, if there is a localizing sequence (τn)∞n=1 as above such
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that each stopped process Sτn admits ε-consistent price systems, for each
ε > 0, then S satisfies (NOA).

We now formulate the notion of an ε-consistent price system, in the spirit
of the pioneering paper of E. Jouini and H. Kallal [JK 95a] (compare also to
section 5 below).

Definition 1.4 Let S satisfy Assumption 1.1. An ε-consistent price system
is a pair (S̃,Q) of a probability Q equivalent to P, and a Q-martingale S̃ =

(S̃t)0≤t≤T , such that S0 = S̃0 and

1 − ε ≤
S̃t

St
≤ 1 + ε, a.s. 0 ≤ t ≤ T,

If both inequalities are strict, then S̃ is an ε-strictly consistent price system.

In order to obtain an ε-consistent price process for the original process S
rather than for its localizations, we need sharper concepts of arbitrage than
just the above obvious one. In order to formulate these we need to formalize
what we mean by a trading strategy.

Definition 1.5 A trading strategy is a predictable finite-variation R-valued
process θ = (θt)0≤t≤T such that θ0 = θT = 0. Its (R+-valued) total variation
process is denoted by Vars(θ):

Vars(θ) = sup
0≤t0≤...≤tn=s

n∑

i=1

|θti − θti−1
|.

We then denote by V (θ) or V ε(θ) the random variable

V (θ) :=

∫ T

0

θtdSt − ε

∫ T

0

StdVart(θ), (3)

and, for 0 ≤ t ≤ T we define the random variables Vt(θ) as

Vt(θ) = V (θ1(0,t)), (4)

so that V (θ) = VT (θ). Given M > 0, the process θ is M-admissible if

Vt(θ) ≥ −M(1 + St) a.s. for all 0 ≤ t ≤ T

and denote by Aadm
M (ε) the set of such processes. Define also Aadm(ε) :=

∪M>0A
adm
M (ε).
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Remark 1.6 Note that the integrals in (3) are a.s. well-defined pointwise,
in the Riemann-Stieltjes sense, since VarT (θ) is a.s. finite. Indeed, for the
second integral simply observe that St is continuous. The same argument
applies to the first integral, after an integration by parts.

Remark 1.7 In the present setting of continuous processes S it is possible
to consider only left-continuous predictable (or equivalently, right-continuous
adapted) processes θ. The above definition is adapted from [CS 06], and
extends to asset prices with jumps.

Remark 1.8 The random variable V (θ) represents the final gain or loss
when applying the trading strategy θ of holding θt shares at time t: during
the interval [t, t + dt] the value of the position in stock (without considering
transaction costs) changes by θtdSt, while the transaction cost εStdVart(θ)
is charged to the cash account.

The condition θ0 = θT = 0 prescribes that a strategy must begin and end
with a cash position only. Similarly, the term 1(0,t) in the definition of Vt(θ)
accounts for the liquidation cost.

Remark 1.9 An “obvious arbitrage” in the sense of Definition 1.2 is realized
either by the strategy θ = 1]]σ,τ [[ or by θ = −1]]σ,τ [[.

Definition 1.10 S admits arbitrage with ε-transaction costs if there is θ ∈
Aadm(ε) such that V ε(θ) ≥ 0 a.s. and P[V ε(θ) > 0] > 0.

The following result characterizes absence of arbitrage in terms of consis-
tent price systems. A crucial feature of this theorem is that both equivalent
statements contain the quantifier “for all ε”.

An attractive feature of this result is that it is easier and cleaner than its
frictionless counterpart (see e.g. [DS 94]) as it does not involve limits (free
lunches).

Theorem 1.11 (Fundamental Theorem) Let S satisfy Assumption 1.1.
The following assertions are equivalent:

(i) For each ε > 0 there exists an ε-consistent price system.

(ii) For each ε > 0, there is no arbitrage for ε-transaction costs.

The paper is organized as follows: in section 2 Theorem 1.3 is shown,
in section 3 we prove Theorem 1.11. Our proof relies on the paper [CS 06],
section 4 translates results of that paper to the setting we use here. Section
5 compares the cases with and without a numéraire. The Appendix contains
some related (counter)examples.
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2 The Local Theorem

This section contains the proof of Theorem 1.3. The localization will be done,
for a given price process S = (St)0≤t≤T and fixed ε > 0, using the following
sequence of [0, T ] ∪ {+∞}-valued stopping times. Define:

ρε
0 = 0 (5)

ρε
n = inf{t > ρn−1 | St/Sρn−1

≥ 1 + ε/3 or St/Sρn−1
≤ 1

1+ε/3
}, n ≥ 1. (6)

Adopting the usual convention that inf{∅} = +∞, we obtain a sequence of
stopping times increasing a.s. to ∞. Hence, for each ε > 0,

lim
n→∞

P[ρε
n < ∞] = 0.

Finally, define ρε
n := ρε

n ∧ T .

Proposition 2.1 Let S satisfy Assumption 1.1 and (NOA). For each 0 <
ε < 1 and n ∈ N, the stopped process Sρε

n admits an ε-consistent price system.

Proof The proof borrows from an argument in [GRS07]. We construct a

process (S̃t)0≤t≤ρε
n

based on and adapted to the stochastic base (Ω,F , (Ft)0≤t≤T ,P),
as well as a measure Q on Fρε

n
equivalent to P|Fρε

n
such that

1 − ε ≤
S̃t

St
≤ 1 + ε, 0 ≤ t ≤ ρε

n and S̃ρε
n

= Sρε
n

on {ρε
n < T}.

We proceed inductively on i = 1, . . . , n. For the first step recall that F0 is
trivial, and divide Ω into three sets:

A+ = {ρε
1 < T, Sρε

1
= S0(1 + ε/3)},

A− = {ρε
1 < T, Sρε

1
= S0/(1 + ε/3)},

A0 = {ρε
1 = T}.

The crucial observation is that the cases P[A+] = 1 or P[A−] = 1 are ex-
cluded, as they would yield an obvious arbitrage, which is ruled out by as-
sumption. We now distinguish between three cases:

Case 1: P[A0] = 0. As just noticed, in this case we necessarily have
P[A+] > 0 and P[A−] > 0 and may define

Zρε
1

=
µ

P [A+]
1A+ +

1 − µ

P [A−]
1A

−

. (7)
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where µ = 1/(ε/3 + 2), and therefore:

µ(1 + ε/3) +
1 − µ

1 + ε/3
= 1,

Define the probability Q1 on Fρε
1

by dQ1/dP = Zρε
1
, which is equivalent to

P|Fρε
1
. Then, the process

S̃t = EQ1[Sρε
1
| Ft], 0 ≤ t ≤ ρε

1.

is obviously a Q1-martingale, and S̃0 = EQ1[Sρε
1
] = S0 by construction. Also,

observe that S̃ρε
1

= Sρε
1

almost surely. For the intermediate times t ∈]]0, ρε
1[[

we have the obvious estimate

1 − ε ≤
1

(1 + ε/3)2
≤

S̃t

St
≤ (1 + ε/3)2 ≤ 1 + ε, 0 ≤ t ≤ ρε

1. (8)

Indeed, S̃ρε
1

= Sρε
1
∈
[

S0

1+ε/3
, S0(1 + ε/3)

]
and hence, by the martingale prop-

erty of S̃, S̃t ∈
[

S0

1+ε/3
, S0(1 + ε/3)

]
which yields (8), by the definition of

ρε
1.

Case 2: 0 < P[A0] < 1. Note that ρε
1 = T on A0. Consider the random

variable Sρε
1

which takes values in
[

S0

1+ε/3
, S0(1 + ε/3)

]
. We again want to

construct a consistent price system.
Subcase 2a. Assume that P[A+] > 0 but P[A−] = 0. Let us replace

Sρε
1

by an Fρε
1
-measurable random variable Šρε

1
by leaving it unchanged on

A+ while changing its values on A0. More concretely, we define Šρε
1

to equal
S0(1+ε/3) on A+ and S0(1+ε/3)−1 on A0 and let dQ1/dP := 1A+µ/P[A+]+
1A

−

(1 − µ)/P[A0], where µ is chosen so that EQ1Šρε
1

= S0. We have

1

1 + ε/3
≤

Šρε
1

S0
≤ 1 + ε/3.

Define
S̃t = E[Šρε

1
| Ft], 0 ≤ t ≤ ρε

1. (9)

We again get S̃0 = S0, but now we have S̃ρε
1

= Sρε
1

only on A+. However,
we now see that this is sufficient to carry out the inductive procedure. As
regards the intermediate values t ∈ ]]0, ρε

1[[ we still have the estimate (8).
The case where P[A+] = 0 and P[A−] > 0 is handled in the same fashion.
Subcase 2b. If P[A+] > 0, P[A−] > 0 then we proceed in a similar way.

We choose Šρε
1

such that it equals S0 on A0 and Sρε
1

on A+ ∪A−, and define

dQ1

dP
:= 1A0

α

P[A0]
+ 1A+

µ(1 − α)

P[A+]
+ 1A

−

(1 − µ)(1 − α)

P[A−]
.
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Here 0 < α < 1 is an arbitrary constant, say α = 1/2, while µ is determined
by the condition:

EQ1 [Šρε
1
] = S0.

Again, we define S̃t as in (9) and (8) will hold true.
Case 3: If P[A0] = 1 then define S̃ρε

i
:= S0 and Q1 := P. This completes

the argument for i = 1.
For the general induction step, suppose that for the stopping time ρε

i−1

defined in (6) there is a process (S̃
(i−1)
t )0≤t≤ρε

i−1
and a probability measure

Qi−1 on Fρε
i−1

, equivalent to P|Fρε
i−1

such that

1 − ε ≤
S̃

(i−1)
t

St
≤ 1 + ε, 0 ≤ t ≤ ρε

i−1, (10)

(
S̃

(i−1)
t

)
0≤t≤ρε

i−1
is a Qi−1-martingale. (11)

S̃ρε
i−1

= Sρε
i−1

on {ρep
i−1 < T}. (12)

Define the partition of {ρε
i−1 < T} into three sets

Ai
+ = {ρε

i−1 < T} ∩ {Sρε
i

= S0(1 + ε/3)},

Ai
− = {ρε

i−1 < T} ∩ {Sρε
i

= S0/(1 + ε/3)},

Ai
0 = {ρε

i−1 < T} ∩ {ρε
i = T}.

We proceed as in the first step, conditionally on Fρε
i−1

, reasoning on the sets:

Bi
1 ={ρε

i−1 < T} ∩ {P[Ai
0 | Fρε

i−1
] = 0}

Bi
2 ={ρε

i−1 < T} ∩ {P[Ai
0 | Fρε

i−1
] ∈ (0, 1)}

Bi
3 ={ρε

i−1 < T} ∩ {P[Ai
0 | Fρε

i−1
] = 1}

which correspond to the three cases considered in the first step.
Again, the crucial observation is that there cannot be a set B ∈ Fρε

i−1

with B ⊆ {ρε
i−1 < T} and P[B] > 0, such that B ⊆ Ai

+ or B ⊆ Ai
− almost

surely. Indeed, otherwise an obvious arbitrage arises for the stopping times
σ = ρε

i−11B + ∞ 1Ω\B and τ = ρε
i1B + ∞ 1Ω\B.

Case 1: As just remarked, on B1
i the absence of obvious arbitrage im-

plies that P [Ai
+|Fρε

i−1
] = 1 or P [Ai

−|Fρε
i−1

] = 1 can hold only on a set of 0

probability. So we define Zρε
i

on Bi
1 similarly as in (7) by

Zρε
i
1Bi

1
=

(
µ

P[Ai
+|Fρε

i−1
]
1Ai

+
+

1 − µ

P[Ai
−|Fρε

i−1
]
1Ai

−

)
1Bi

1
.
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Case 2: Turning to the set Bi
2, we again have to modify the random

variable Sρε
i

on Ai
0 to obtain an Fρε

i
-measurable Šρε

i
similarly as above. To

avoid measurable selection issues, we provide an explicit construction. Set:

H i
1 := Bi

2 ∩ {P[Ai
−|Fρε

i−1
] = 0},

H i
2 := Bi

2 ∩ {P[Ai
+|Fρε

i−1
] = 0},

H i
3 := Bi

2 \ (H i
1 ∪ H i

2).

Subcase 2a: On H i
1 we set

Šρε
i
1Hi

1
:= Sρε

i−1
(1 + ε/3)1Ai

+∩Hi
1
+ Sρε

i−1
(1 + ε/3)−11Ai

0∩Hi
1

and define

Zρ̄ε
i
1Hi

1
=

µ

P[Ai
+|Fρε

i−1
]
1Ai

+∩Hi
1
+

1 − µ

P[Ai
0|Fρε

i−1
]
1Ai

0∩Hi
1
,

that is,
E[Zρε

i
Šρε

i
|Fρε

i−1
]1Hi

1
= Sρε

i−1
1Hi

1

holds true. On H i
2 we proceed similarly.

Subcase 2b: Define Zρε
i

and Šρε
i

on H i
3 by

Zρε
i
1Hi

3
:= 1Ai

0∩Hi
3

α

P[Ai
0|Fρε

i−1
]
+ 1Ai

+∩Hi
3

µ(1 − α)

P[Ai
+|Fρε

i−1
]
+ 1A

−
∩Hi

3

(1 − µ)(1 − α)

P[Ai
+|Fρε

i−1
]

,

Šρε
i
1Hi

3
:= Sρε

i
1(Ai

+∪A−

i )∩Hi
3
+ Sρε

i−1
1Ai

0∩Hi
3
.

Case 3: We set Zρε
i

:= 1 on Bi
3. We now have defined the conditional

density Zρε
i
on Bi

3 as well as on Bi
1 and Bi

2. To put the pieces together, define
the probability measure Qi on Fρε

i
by

dQi

dP
=

dQi−1

dP

[
Zρε

i
1{ρε

i−1<T} + 1{ρε
i−1=T}

]

and
S̃

(i)
ρε

i
= Sρε

i
1Bi

1
+ Šρε

i
1Bi

2
+ S̃

(i−1)
T 1Ω\(Bi

1∪Bi
2).

Letting

S̃
(i)
t = EQi

[
S̃

(i)
ρε

i

∣∣∣ Ft

]
, 0 ≤ t ≤ ρε

i ,

we have completed the induction step, as conditions (10), (11) and (12) are
satisfied with i − 1 replaced by i.
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Summing up, we have constructed, for each n ∈ N, a probability measure
Qn on Fρε

n
, equivalent to P|Fρε

n
and a Qn-martingale (S̃

(n)
t )0≤t≤ρε

n
such that

1 − ε ≤
S̃

(n)
t

St
≤ 1 + ε,

which completes the proof.

Remark 2.2 The above construction verifies a concatenation property: on
[[0, ρn−1]] the processes S̃(n) and S̃(n−1) coincide, and Qn−1 equals the restric-
tion of Qn to Fρε

n−1
.

Having proved Proposition 2.1, the remainder of the proof of Theorem 1.3 is
standard.

Proof of Theorem 1.3 First, suppose that there is no obvious arbitrage
for all ε > 0. Fix a sequence (εk)k≥1 in R+ tending to zero and find, for
n ≥ 1, an increasing sequence of integers (mn,k)

∞
k=1 such that

P
[
ρεk

mn,k
< T

]
< 2−(n+k).

Letting τn =
∧∞

k=1 ρεk
mn,k

we find that

P[τn < T ] < 2−n.

Clearly (τn)∞n=1 is a sequence of stopping times increasing a.s. to T and, for
each n ≥ 1 and ε > 0, the stopped process Sτn admits an ε-consistent price
system.

To see the other direction of Theorem 1.3, notice that the convergence
of τn to T implies that any obvious arbitrage can also be realized by some
σ, τ such that τ ≤ τk on {τ < ∞} for some k. But this is clearly excluded
by the existence of consistent price systems for arbitrary ε, see the proof of
Theorem 1.11 below.

3 Duality Theory

The previous section established that, under the no obvious arbitrage (NOA)
condition, there are localizations (Sτn)n≥1 admitting ε-consistent price sys-
tems. Thus the duality theory developed in [CS 06] or [KS 02] applies to
the stopped processes (Sτn)n≥1, and this section employs dual arguments to
construct consistent price systems for S.
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In this section, fix a process S = (St)0≤t≤T as in Theorem 1.3, and the
associated stopping times (τn)∞n=1 such that Sτn admits an ε-consistent price
systems for all ε > 0 and n ≥ 1.

If τn ≥ T a.s. for some n, then S already has ε-consistent price systems,
and Theorem 1.11 immediately follows from Theorem 1.3. To exclude this
trivial case, we make the following:

Assumption 3.1 P[τn < T ] > 0 for all n ≥ 1.

Denote by T the set of [0, T ]-valued stopping times σ such that P[σ <
T ] > 0 and σ ≤ τn a.s. on {σ < T} for some n ≥ 1. For example, τk ∈ T for
each k, due to Assumption 3.1.

Lemma 3.2 Let the assumptions of Theorem 1.3 hold, let σ ∈ T and σ ≤ τn

on {σ < T}. The process σSτn = (St)σ≤t≤τn
also admits an ε-consistent price

system, for all ε > 0. More precisely, for any ε > 0 and any probability R on
Fσ with R ∼ 1{σ<T}P|Fσ

, there exists a probability Q on Fτn
and a process

S̃ = (S̃t)σ≤t≤τn
such that:

(i) Q
∣∣
Fσ

= R,

(ii) S̃ is a martingale under Q on [[σ, τn]], i.e., for each stopping time ρ s.t.
σ ≤ ρ ≤ τn we have

EQ[S̃τn
|Fρ] = S̃ρ,

(iii) S̃σ = Sσ and

1 − ε ≤
S̃t

St
≤ 1 + ε, for σ ≤ t ≤ τn.

Proof Let 0 < ε < 1 and take, for δ = ε/3, a δ-consistent price system

((S̃
(δ)
t )0≤t≤τn

,Q(δ)) for the process (St)0≤t≤τn
. Define

S̃t = S̃
(δ)
t

Sσ

S̃
(δ)
σ

, σ ≤ t ≤ τn

and
dQ

dP
:=

dQ(δ)

dP

dR/dP

E[dQ(δ)/dP|Fσ]
.

Then (S̃,Q) satisfies (i), (ii) and (iii).
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Definition 3.3 For ε > 0 and a stopping time σ ∈ T satisfying σ ≤ τn

on {σ < T}, define CPS(σ, ε, n) as the family of all pairs (S̃,Q) such that
Q|Fσ

∼ 1{σ<T}P|Fσ
and (ii), (iii) above are satisfied. The subfamily of pairs

satisfying (iii) with strict inequalities is denoted by SCPS(σ, ε, n). (cf. Defi-
nition 1.4.)

Definition 3.4 Let S satisfy the assumptions of Theorem 1.3. For ε > 0
and σ ∈ T define

F (σ, ε) = lim
n→∞

inf
(eS,Q)∈CPS(σ,ε,n)

Q[τn < T ], (13)

G(σ, ε) = lim
n→∞

inf
(eS,Q)∈CPS(σ,ε,n)

EQ

[
S̃τn

S̃σ

1{τn<T}

]
, (14)

and
F (ε) = sup

σ∈T
F (σ, ε), G(ε) = sup

σ∈T
G(σ, ε), (15)

These definitions beg for an intuitive explanation. For instance, consider
σ ≡ 0 in (13). Then, for a fixed n, the right hand side of (13) estimates the

minimum probability Q assigned by any ε-consistent price system (S̃,Q) to
the event {τn < T}. Since limn→∞ P[τn < T ] = 0, a strictly positive value of

F (0, ε) indicates that, for (S̃,Q) ∈ CPS(0, ε, n) the probabilities Q become
increasingly singular with respect to P as n → ∞. This intuitive idea can
be made precise by the notion of contiguity (see e.g. [JS 87]).

Similarly, G(0, ε) measures the limiting probability (as n → ∞) of the

event {τn < T} assigned by the measure R defined by dR/dQ = S̃τn
/S̃0 =

S̃τn
/S0.
The idea is that F (ε) = G(ε) = 0, for all ε > 0, corresponds to the

“regular” case, where there are ε-consistent price systems and — dually —
there are no free lunches. On the contrary, the case F (ε) > 0 or G(ε) > 0,
for some ε > 0 corresponds to the “singular” case, where there are no ε-
consistent price system and — again dually — there are free lunches. We
shall now show that this heuristic idea can indeed be made precise: in general,
however, instead of considering σ = 0 only, one needs to consider arbitrary
stopping times σ ∈ T , which leads to definition (15) below. The proof of
Proposition A.2 in the Appendix shows a concrete example where no obvious
arbitrage exists, and yet F (ε) = 1.

Lemma 3.5 Let σ ∈ T such that σ ≤ τn0 a.s. on {σ < T}. Let ε > 0, δ > 0,
and consider a probability measure Qσ on Fσ equivalent to 1{σ<T}P|Fσ

.

Then there is n ≥ n0 and (S̃,Q) ∈ CPS(σ, ε, n) such that Q|Fσ
= Qσ and

Q[τn < T ] < F (ε) + δ as well as EQ

[ eSτn

eSσ
1{τn<T}

]
< G(ε) + δ.

12



Proof We shall concentrate below on the statement related to F . Start
defining conditional versions of F (σ, ε), which are Fσ-measurable functions
defined on the set {σ < T}:

f(σ, ε, n) = ess inf
(eS,Q)∈CPS(σ,ε,n)

Q[τn < T | Fσ], n ≥ n0. (16)

Claim 0: We may replace CPS by SCPS in the above definition, i.e.

f(σ, ε, n) = ess inf
(eS,Q)∈SCPS(σ,ε,n)

Q[τn < T | Fσ], n ≥ n0.

Note that by Theorem 1.3 the set SCPS(σ, ε, n) of ε-strictly consistent
price systems (see Definition 3.3 above) is nonempty as any ε/2-consistent
price system is ε-strictly consistent. Fix (Ŝ, Q̂) ∈ SCPS(σ, ε, n). For each
0 < η < 1 and each (S̃,Q) ∈ CPS(σ, ε, n), set:

Sη
T :=

ηq̂ŜT + (1 − η)qS̃T

ηq̂ + (1 − η)q
,

Qη := ηQ̂ + (1 − η)Q,

where q̂ = dQ̂/dP and q = dQ/dP. Defining Sη
t := E[Sη

T |Ft] we clearly
have that (Sη,Qη) ∈ SCPS(σ, ε, n). Setting ηk := 1/k, the corresponding
(Sηk ,Qηk

) are in SCPS(σ, ε, n) and

Qηk
[τn < T |Fσ] → Q[τn < T |Fσ], k → ∞.

Claim 1: For fixed σ and ε > 0, the sequence (f(σ, ε, n))∞n=1 of Fσ-measurable
functions is decreasing.

To see this, take any (S̃,Q) ∈ SCPS(σ, ε, n). Corollary 4.7 below shows
that there exists (S̃ ′,Q′) ∈ CPS(σ, ε, n + 1) such that the restriction of S̃ ′

to [[0, τn]] equals S̃ and Q′|Fτn
= Q. Thus

Q[τn < T |Fσ] = Q′[τn < T |Fσ] ≥ Q′[τn+1 < T |Fσ],

and the claim follows.
Since

(
f(σ, ε, n)

)
n≥n0

is a decreasing sequence of (equivalence classes of)

Fσ-measurable [0, 1]-valued functions we conclude that

f(σ, ε) = lim
n→∞

f(σ, ε, n) (17)

is a well-defined Fσ-measurable function.
Claim 2:

f(σ, ε) ≤ F (ε), a.s. on {σ < T}

13



Indeed, otherwise there is an Fσ-measurable set A ⊆ {σ < ∞}, P[A] > 0,
and α > 0 such that

f(σ, ε)1A ≥ (F (ε) + α)1A.

Define the stopping time ρ by

ρ = σ1A + T1Ω\A

and observe that, for each n ≥ n0 and (S̃,Q) ∈ CPS(ρ, ε, n)

Q[τn < T ] = EQ

[
Q[τn < T | Fρ]

]
≥ F (ε) + α,

since Q is by definition concentrated on {σ < T}, and this gives a contra-
diction to (13) and (15).

Claim 3: For each n ≥ n0 and η > 0 there is (S̃0,n,Q0,n) ∈ CPS(σ, ε, n)
such that

Q0,n[τn < T | Fσ] ≤ f(σ, ε, n) + η, a.s. (18)

and

Q0,n|Fσ
=

1{σ<T}

P[σ < T ]
P

∣∣∣∣
Fσ

. (19)

By the definition of the essential infimum in (16), for any η > 0 there is

a sequence (S̃k,n,Qk,n)∞k=1 ∈ CPS(σ, ε, n) as well as a partition (Ak,n)∞k=1 of
{σ < T} into Fσ-measurable sets such that

∞∑

k=1

Qk,n[τn < T | Fσ]1Ak,n ≤ f(σ, ε, n) + η.

We construct (S̃0,n,Q0,n) by pasting together all (S̃k,n,Qk,n). We define

S̃0,n = (S̃0,n
t )σ≤τ≤τn

by

S̃0,n
t =

∞∑

k=1

S̃k,n
t 1Ak,n, for σ ≤ t ≤ τn.

To define Q0,n, first introduce the Radon-Nikodym derivatives

ϕk,n =
dQk,n|Fσ

dP
,

which are Fσ-measurable functions, strictly positive on {σ < T}, and set

dQ0,n

dP
=

1

P[σ < T ]

[
∞∑

k=1

dQk,n

dP

1

ϕk
1Ak,n

]
.

14



Then (S̃0,n,Q0,n) is indeed an element of CPS(σ, ε, n) verifying Claim 3.
To finish the proof, fix the stopping time σ and the probability measure

Qσ as in the statement of the lemma. For n ≥ n0 and η = n−1 apply the
previous claim to find (S̃0,n,Q0,n) ∈ CPS(σ, ε, n) verifying (18) and (19).

Define Q̃0,n by

dQ̃0,n

dP
:=

dQ0,n

dP

dQσ/dP

E[dQ0,n/dP|Fσ]

so that (S̃0,n, Q̃0,n) again is in CPS(σ, ε, n) and the restriction of Q̃0,n to Fσ

equals Qσ. By Lebesgue’s theorem we conclude that

lim
n→∞

Q̃0,n[τn < T ] = lim
n→∞

EeQ0,n

[
Q̃0,n[τn < T | Fσ]

]

≤ EQσ
[ lim
n→∞

f(σ, ε, n) + n−1]

≤ EQσ
[f(σ, ε)] ≤ F (ε).

Now it suffices to notice that the same arguments can be carried out simul-
taneously for G, which yields the assertion of this Lemma.

Lemma 3.6 In the setting of Definition 3.4 we have, for ε1, ε2 > 0, the
functional inequalities

(i) F (ε1)F (ε2) ≥ F ((1 + ε1)(1 + ε2) − 1),

(ii) G(ε1)G(ε2) ≥ G((1 + ε1)(1 + ε2) − 1).

Hence either F (ε) = 0 (resp. G(ε) = 0) for all ε > 0, or there is a constant
cF > 0 (resp. cG > 0) such that F (ε) ≥ 1 − cF ε (resp. G(ε) ≥ 1 − cGε).

Proof Fix σ ∈ T such that σ ≤ τn on {σ < T}. For δ > 0, we want to find

m ≥ n and (S̃,Q) ∈ CPS(σ, (1 + ε1)(1 + ε2) − 1, m) such that

Q[τm < T ] < (F (ε1) + δ)(F (ε2) + δ) (20)

Indeed, first find k ≥ n and (S̃1,Q1) ∈ CPS(σ, ε1, k) such that

Q1[τk < T ] < F (ε1) + δ.

Then apply the previous Lemma 3.5 to find m > k and (S̃2,Q2) ∈ CPS(τk, ε2, m)
such that Q2|Fτk

equals the normalized restriction of Q1 to the set {τk < T}
and

Q2[τm < T ] < F (ε2) + δ.
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To concatenate these two objects, define the probability measure Q by:

Q = Q11{τk=T} + Q1[τk < T ]Q2

and define the process S̃ = (S̃t)σ≤t≤τm
by

S̃t =

{
S̃1

t , for σ ≤ t ≤ τk

S̃2
t

eS1
τk

Sτk

, for τk ≤ t ≤ τm.

We find that (Q, S̃) ∈ CPS(σ, (1+ε1)(1+ε2)−1, m) and satisfies (20), which
proves (i). We may rewrite inequality (i) by stating that, for η1, η2 > 0,

log(F (eη1 − 1)) + log(F (eη2 − 1)) ≥ log(F (eη1+η2 − 1)).

Letting h(η) = log(F (eη−1)), which takes its values in [−∞, 0] and decreases
monotonically, we therefore obtain the functional inequality

h(η1) + h(η2) ≥ h(η1 + η2), η1, η2 > 0. (21)

If h(η) ≡ −∞, i.e. F (ε) = 0, for all ε > 0, then this inequality is clearly
satisfied. This corresponds to the “regular case” (see the discussion after
Definition 3.4). Otherwise there is η0 such that h(η0) > −∞.

Claim 3.7 There is a constant CF ≥ 0 such that

h(η) ≥ −CF η, for 0 ≤ η ≤ η0.

Indeed, it is immediately seen by induction that h(lη) ≤ lh(η) for all
η > 0 and all natural numbers l ≥ 1. This implies that

h(η)

η
≥

h(lη)

lη
, η > 0, l ≥ 1.

Now fix η0 > 0 and set −CF := infη∈(η0/2,η0](h(η)/η), which is finite since h
is decreasing and h(η0) > −∞. For k ∈ N0 and η ∈ Ik = (η0/2k+1, η0/2k] it
follows that

h(η)

η
≥

h(2kη)

2kη
≥ −CF ,

which proves the claim since ∪k≥0Ik = (0, η0].
The above claim implies that there is ε0 > 0 and cF ≥ 0 such that

F (ε) ≥ 1 − cFε, for 0 ≤ ε ≤ ε0. (22)

Since F (ε) ∈ [0, 1], it follows that (22) holds for all ε > 0 (by possibly passing
to a different constant cF > 0). This completes the proof of the assertion
pertaining to the function F . The arguments for G again are similar to those
for F .
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Proposition 3.8 Suppose that S satisfies the assumptions of Theorem 1.3.
Then at least one of the following three statements holds true.

(i) For each ε > 0, there is an ε-consistent price system (S̃,Q) for S.

(ii) There is cF > 0 such that F (ε) ≥ 1 − cF ε, for each ε > 0.

(iii) There is cG > 0 such that G(ε) ≥ 1 − cGε, for each ε > 0.

Proof In view of the preceding lemma we have to show that F ≡ G ≡ 0
implies the existence of an ε-consistent price process, for each ε > 0.

Fix 0 < ε < 1 and let εk = (1 + ε)2−(k+1)
− 1 so that

∏∞
k=0(1 + εk) =

1 + ε. Using Lemma 3.5, we inductively construct an increasing sequence
(nk)

∞
k=0, starting at n0 = 0, and consistent price systems (S̃(nk),Q(nk))∞k=0 ∈

CPS(τnk
, εk, nk+1), where τn0 = 0, such that:

(i) Q(nk) is the normalized restriction of Q(nk−1) to the set {τnk
< T} on

Fτnk
, for k ≥ 1.

(ii) Q(nk)[τnk+1
< T ] < 1

2
, for odd k.

(iii) EQ(nk)

[
eSτnk+1

Sτnk

1{τnk+1
<T}

]
< 1

2
, for even k.

We then concatenate these objects similarly as in the proof of the previous
Lemma 3.6:

Q
(nK)

:= Q
(nK−1)

1{τnK
=T} + Q

(nK−1)
[τnK

< T ]Q(nK),

S
(nK)

t :=





S

(nK−1)

t , for 0 ≤ t ≤ τnK

S̃
(nK)
t

S
(nK−1)
τnK

SτnK

, for τnK
≤ t ≤ τnK+1

.

For each K ∈ N we thus obtain

(
S

(nK)
, Q

(nK))
∈ CPS

(
0,

K∏

k=0

(1 + εk) − 1, nK+1

)
.

Conditions (ii) and (iii) imply that

Q
(nK)

[τnK+1
< T ] ≤ 21−K/2 (23)

E
Q

(nK )

[
S̃τnK+1

S0
1{τnK+1

<T}

]
≤ 21−K/2

17



and the probability measure Q
(nK)

on FτnK+1
is equivalent to P|FτnK+1

.

As Q(nK)[τnK
= T ] = 0, we have

dQ
(nL)

dP

∣∣∣∣∣FτnL
=

dQ
(nK−1)

dP

∣∣∣∣∣FτnK
> 0

on {τnK
= T} for each L ≥ K − 1.

As {τnK
= T} ↑ Ω a.s. as K → ∞, we may define Q by

dQ

dP
:= lim

K→∞

dQ
(nK)

dP
,

and we get an equivalent measure Q ∼ P. Define also S̃t := S
(nK)

t for
0 ≤ t ≤ τnK+1

.

The process S̃ satisfies

1/(1 + ε) ≤
S̃t

St

≤ 1 + ε, a.s. 0 ≤ t ≤ T.

It remains to verify that Q is a probability measure and S̃ is a Q-martingale.
The first statement follows from:

Q(Ω) = E

[
lim

K→∞

dQ

dP
1{τnK+1

=T}

]
=

lim
K→∞

E

[
1{τnK+1

=T}
dQ

dP

]
= lim

K→∞
Q

(nK)
[τnK+1

= T ] = 1,

where we used monotone convergence in the second equality and (23). The
second statement follows similarly.

Remark 3.9 We stress again that the above proof crucially depends on the
quatifier “for each ε > 0”.

We now can formulate and prove a version of Theorem 1.11. The argu-
ment relies on the superhedging theorem from [CS 06]. This result charac-
terizes the initial endowments from which a given contingent claim can be
hedged in a continuous-time financial market model with transaction costs.
The first theorem of this type was obtained in [CK96]. The geometric frame-
work developed in [K 99] was applied in a series of papers [KL 02], [KS 02] and
[CS 06] at increasing levels of generality. We need the superhedging result to
produce trading strategies with given payoffs which form a “free lunch”, i.e.
an asymptotic form of arbitrage in a suitable sense.
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We have to use admissible ε-self-financing portfolio processes in the sense
of [CS 06, Def. 7] instead of those in Definition 1.5. We shall elaborate in
section 4 below upon the relationship between these two classes of strategies.

Recall the following definition ([K 99], [S 94]).

Definition 3.10 For a given R+-valued process S = (St)0≤t≤T , and ε > 0,

we denote by K̂ε
t the solvency cone at time t, defined as:

K̂ε
t = cone

{
St(1 + ε)e0 − e1,−e0 +

1

St(1 − ε)
e1

}
.

We denote by (K̂ε
t )

∗ its polar cone, given by:

(K̂ε
t )

∗ =

{
(w0, w1) ∈ R

2
+

∣∣∣∣St(1 − ε) ≤
w1

w0
≤ St(1 + ε)

}

= {w ∈ R
2 | 〈x, w〉 ≥ 0, for x ∈ K̂ε

t }.

Here e0 = (1, 0), e1 = (0, 1) denote the unit vectors in R
2, and the vectors

in R
2 describe the holdings (in physical units) in the bond and the stock. The

random cone K̂ε
t denotes the investment positions in physical units at time

t which can be liquidated to zero. By 〈 . , . 〉 we denote the inner product in
R

2. We shall also use the notation 1 := (1, 1).

Definition 3.11 We define Z (resp. Zs) as the set of P-martingales such

that for all t, Zt ∈ (K̂ε
t )

∗ \ {0} a.s. (resp. Zt ∈ int (K̂ε
t )

∗ a.s.).

The following statement is straightforward to check:

Proposition 3.12 Define the measure Q(Z) by dQ/dP := Z1
T /EZ1

T . Then
Z ∈ Z (resp. Z ∈ Zs) iff ((Z2

t /Z
1
t )0≤t≤T ,Q(Z)) is a consistent (resp. strictly

consistent) price system.

Thus we are entitled to call elements of Z (resp. Zs) consistent (resp.
strictly consistent) price processes without introducing any ambiguity in the
terminology.

Definition 3.13 Let Yt be a progressively measurable R
d-valued process with

right- and left-hand limits. Denote by ∆Yt := Yt−Yt−, ∆+Yt := Yt+ −Yt and
Y c

t := Yt −
∑

0<s≤t ∆Ys −
∑

0≤s<t ∆+Ys.
We say that Y has finite variation if Y c

t is a finite variation process (see
e.g. p. 36 of [P 04]) and

∑

0<t≤T

|∆Yt| +
∑

0≤t<T

|∆+Yt| < ∞ a.s.
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Then define the total variation Var(Y ) as

Vars(Y ) := Vars(Y
c) +

∑

0<u≤s

|∆Yu| +
∑

0≤u<s

|∆+Yu|.

Lemma 3.14 Under the usual conditions on the filtration, if (Yt)0≤t≤T has
a.s. finite variation paths then

sup
0≤τ1≤...≤τn≤s

n∑

i=1

|Yτi
− Yτi−1

|

is measurable and a.s. equal to Vars(Y ) on [0, T ].

We recall Definition 7 from [CS 06], which we adapt to the present setting.

Definition 3.15 Suppose that the process (St)0≤t≤T satisfies Assumption 1.1
and admits ε-strictly consistent price processes, for each ε > 0. For fixed
ε > 0, an R

2-valued process V̂ = (V̂t)t∈[0,T ], is called an ε-self-financing

portfolio process if V̂0 = 0 and it satisfies the following properties:

(i) it is predictable and a.e. path has finite variation (in the sense of Def-
inition 3.13 above),

(ii) for every pair of stopping times 0 ≤ σ ≤ τ ≤ T , we have

V̂τ − V̂σ ∈ −K̂ε
σ,τ a.s.

where

K̂ε
σ,τ (ω) := conv




⋃

σ(ω)≤u<τ(ω)

K̂ε
u(ω)



 ,

the bar denoting closure in R
2.

The set of ε-self-financing portfolio processes is denoted by V̂ = V̂(ε).
Define the partial order �t between random variables ξ, ζ as

ξ �t ζ ⇐⇒ ξ − ζ ∈ K̂ε
t a.s.

An ε-self-financing portfolio process V̂ is admissible if it satisfies the fol-
lowing additional property:

(iii) there is a constant M > 0 such that V̂T �T −M1 and 〈Zτ , V̂τ 〉 ≥
−M〈Zτ , 1〉 a.s. for all [0, T ]-valued stopping times τ and for all Z ∈ Zs.
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We denote by V̂adm
M = V̂adm

M (ε) the set of all such portfolio processes V̂ and

by Âadm
M = Âadm

M (ε) the set of all terminal random variables V̂T , V̂ ∈ V̂adm
M .

We also use the notation V̂adm := ∪M V̂adm
M and Âadm := ∪MÂadm

M .

Definition 3.16 A process S satisfying Assumption 1.1 admits a free lunch
with bounded risk for sufficiently small transaction costs if there is ε > 0,
α > 0 and a sequence (hn)∞n=1 in Âadm(ε) with

hn �T −1, a.s.

and lim
n→∞

hn = h0, a.s.

where h0 is an R
2
+-valued random variable such that P[h0 6= 0] > 0.

Theorem 3.17 Let S satisfy the assumptions of Theorem 1.3. The following
assertions are equivalent:

(i) For each ε > 0 there exists an ε-consistent price system.

(ii) There is no free lunch with bounded risk for arbitrarily small transaction
costs.

If these two equivalent conditions fail, then one of the following statements
holds true.

(a) There exists a constant cF > 0 and ε > 0 such that there exists a

sequence (fn(ε), 0)∞n=1 in Âadm(ε) with

fn(ε) ≥ −1 a.s.

and lim
n→∞

fn(ε) = f(ε) := [(cF ε)−1 − 1]1B a.s.

for some B ∈ FT with P(B) > 0.

(b) There exists a constant cG > 0 and ε > 0 such that there exists a

sequence (0, gn(ε))
∞
n=1 in Âadm(ε) with

gn(ε) ≥ −1 a.s.

and lim
n→∞

gn(ε) = [(cGε)−1 − 1]1B a.s.,

for some B ∈ F with P(B) > 0.
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Proof (i)⇒(ii): Fix ε > 0 and suppose there is a free lunch (hn)∞n=1 =
(fn, gn)∞n=1 as in Definition 3.16. Supposing there is an ε-consistent price

system (S̃,Q) we have to arrive at a contradiction. Let V̂ n be a portfolio

process such that V̂ n
T = hn.

Lemma 8 of [CS 06] implies that the process 〈Zs, V̂
n
s 〉 is a supermartingale

for each Z ∈ Z. Hence

EQ[〈hn, (1, S̃T )〉] = E[〈hn, ZT 〉] ≤ 0,

where Z corresponds to (S̃,Q) as in Proposition 3.12 above.
On the other hand, by Fatou’s lemma

lim
n→∞

EQ[〈hn, (1, S̃T )〉] ≥ EQ[〈f0, (1, S̃T )〉] > 0,

which yields the desired contradiction.
(ii)⇒(i): If (i) fails, Proposition 3.8 implies that either (ii) or (iii) in that

proposition hold true. We shall show that (ii) implies (a), the argument for
(iii) implying (b) being analogous.

Consider cF > 0 in (ii), and fix 0 < ε < c−1
F . Find a stopping time σ ∈ T

with σ ≤ τn0 on {σ < T} for some n0 ≥ 1 such that F (σ, ε) ≥ 1 − cF ε. For
n ≥ n0 define fn by

fn = −1{σ<T} + (cFε)−11{σ<T,τn=T}. (24)

For any ε-consistent price system (Q, S̃) ∈ CPS(σ, ε, τn) we know that
Q[τn = T ] ≤ 1 − F (σ, ε) ≤ cFε so that

EQ[〈(1, S̃T ), (fn, 0)〉] ≤ −1 + cFε(cFε)−1 = 0.

At this stage we apply Theorem 15 in [CS 06]. For the convenience of the
reader we reformulate it in the context of the present setting.

Corollary 3.18 Let Aadm
σ,τn

denote the set of elements in Aadm which are ter-

minal values of ε-self-financing portfolios V̂ satisfying V̂ = 0 on J0, σK and

V̂ = V̂τn
on Jτn, T K. Then G ∈ Aadm

σ,τn
if and only if

E〈(1, S̃T ), G〉 ≤ 0

for all consistent (equivalently, for all strictly consistent) price system (S̃,Q) ∈
CPS(σ, ε, τn).
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The superhedging theorem implies that (fn, 0) is indeed in Âadm(ε). Ob-
serving that P[τn = T ] tends to 1, assertion (a) follows choosing B := {σ <
T}. (Recall that P(B) > 0 by Assumption 3.1.)

Proof of Theorem 1.11 In view of Proposition 4.9 and Theorem 3.17 it
suffices to show that the existence of an ε-free lunch implies the existence of
an arbitrage, and then (i) → (ii) of Theorem 1.11 follows. We assume that
(a) of Theorem 3.17 holds true, case (b) follows from a similar argument.

Let V̂ (n) be an ε-self financing process realizing

V̂τn
(n) = (fn, 0), (25)

where fn is in (24). We extend V̂ (n) in a natural way by setting

V̂t(n) = 0, 0 ≤ t ≤ σ, V̂t(n) := V̂τn
(n), t ≥ τn.

Recall that for a.e. ω, τk(ω) = T for k ≥ k̄m(ω) large enough. Fix
m0 ∈ N0. It follows from Lemma 11 and Proposition 13 of [CS 06] that there

are convex combinations of the sequence of stopped processes
(
V̂ τm0 (n)

)
n≥m0

which converge to some predictable finite variation process (on J0, τmK) de-

noted by (Ŵ
(m0)
t )0≤t≤τm0

. Using an obvious inductive procedure we may

define (Ŵ (m))0≤t≤τm
for all m ≥ m0 and for m1 ≤ m2, the processes Ŵ (m1)

and Ŵ (m2) a.s. coincide on J0, τm1K. Hence we may well define the limiting

process Ŵt, t ∈ [0, T ].

Ŵ has a.s. finite variation on [0, T ] (again because τm increases to T in a

stationary way, m → ∞). Clearly, Ŵ also satisfies (ii) and (iii) of Definition

3.15 as all the V̂ (n) do.

Proposition 4.9 implies that the positive random variable Ŵ 1
T = f is the

terminal value of an admissible trading strategy (in the sense of Definition
1.5), hence there is arbitrage.

Finally we show that the existence of an ε-consistent price system excludes
the occurence of arbitrage possibilities for markets with ε-transaction costs.

Let VT (θ) = V ε
T (θ) be a.s. nonnegative. Take any consistent price system

(S̃,Q) and estimate

∫ T

0

θtdS̃t = −

∫ T

0

S̃tdθt =

VT (θ) + ε

∫ T

0

StdVarT (θ) +

∫ T

0

(St − S̃t)dθt ≥ VT (θ) ≥ 0,
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using Definitions 1.4 and 1.5. The stochastic integral
∫

θdS̃ is bounded from
below, hence it is a Q-supermartingale and we get that EQ[VT (θ)] ≤ 0,
proving that VT (θ) equals 0, Q- and hence P-almost everywhere.

Remark 3.19 The reader might wonder whether the assumption of equal
transaction costs for buying and selling restricts the generality of the model
considered. This is clearly not the case. For example, consider the situation
of ε-transaction costs for buying, and zero costs for selling, which corresponds
to the bid-ask interval [St, St(1+ε)]. Under equivalent conditions of Theorem
1.11, we claim that there exists a consistent price system, i.e. a probability
Q ∼ P and a Q-martingale S̃ such that

St ≤ S̃t ≤ St(1 + ε) a.s. for all t.

Indeed, take η > 0 such that (1 + η)2 ≤ 1 + ε. Theorem 1.11 provides a
measure Q and a process S̄ such that

St

1 + η
≤ S̄t ≤ St(1 + η).

Defining S̃ := S̄(1+ η) we get the desired consistent price system. This trick
is used again in Lemma 4.6 below.

4 Comparing concepts of admissibility

We now explore the relationship between our present Definition 1.5 of ad-
missible strategies and that of [CS 06] (Definition 3.15 above).

We may represent V̂ (see e.g. [KS 02]) as

V̂t = V̂ c
t +

∑

0<s≤t

∆Vs+
∑

0≤s<T

∆+Vs =

∫ t

0

˙̂
V sdVars(V̂

c)+
∑

0<s≤t

∆Vs+
∑

0≤s<T

∆+Vs,

where
˙̂
V s ∈ S ∩ (−K̂ε

s ) holds for VarT (V̂ c)-a.e. s, P-almost surely, and S
denotes the unit sphere of R

2. This remark is also true for strategies in the
sense of Definition 1.5, we may write

θt =

∫ t

0

θ̇udVaru(θ
c) +

∑

0<u≤t

∆θu +
∑

0≤u<T

∆+θu.

Definition 4.1 A claim V̂ ∈ V̂(ε) is cash-settled (c.s.) if V̂ 2
T = 0. A

c.s. claim V̂ is on the boundary if, for almost every ω,
˙̂
V t is in −∂K̂ε

t for

dVarT (V̂ c)-almost every t and for all t, ∆+V̂t, ∆V̂t ∈ −∂K̂ε
t .
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Proposition 4.2 Let Vt(θ) be the value process of a trading strategy as in

Definition 1.5. Then there is a c.s. portfolio process V̂ on the boundary such
that

V̂ 1
T = VT (θ). (26)

Conversely, for each c.s. portfolio process on the boundary there is θ such
that (26) holds.

Proof Consider a predictable process h such that θc
t =

∫ t

0
h(s)dVars(θ) and

h(s) ∈ {±1}, and define:

lt :=

{
v− := (St(1 − ε)e0 − e1) if h(t) = −1,

v+ := (e1 − St(1 + ε)e0) if h(t) = +1,

and set

dV̂ c
t = ltdVart(θ), ∆+V̂t = |∆+θt|vsign(∆+θt), ∆V̂t = |∆θt|vsign(∆θt).

Thus (26) will be satisfied. The inverse transformation is equally easy, recall-

ing that
˙̂
V takes values in {v+/|v+|, v−/|v−|}, dVarT (V̂ c)-a.e. and ∆V̂ , ∆+V̂

are multiples of either v+ or v−.

The next Lemma is a simple geometric observation.

Lemma 4.3 Let v ∈ (−K̂ε
t ) ∩ S. Then there is y ∈ (S ∩ −∂K̂ε

t ) ∪ {0} such
that y − v ∈ R

2
+.

Corollary 4.4 The set of cash positions attainable by c.s. portfolio processes
V̂ 1

T is equal to the set of positions dominated by some VT (θ).

Proof Using the previous Lemma and the measurable selection theorem,
take a predictable process ct ∈ (S ∩ −∂K̂ε

t ) ∪ {0} and predictable processes

dt, gt ∈ −∂K̂ε
t such that

ct −
˙̂
V t ∈ R

2
+,

gt − ∆V̂t ∈ R
2
+,

dt − ∆+V̂t ∈ R
2
+,

and |gt| = |∆V̂t|, |dt| = |∆+V̂t|. Define

dŴt := ctdVart(V̂ ),

∆Ŵt := gt,

∆+Ŵt := dt.
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This process is still of finite variation and is a portfolio process on the bound-
ary. Let θ be the strategy corresponding to Ŵ (as in Proposition 4.2 above).

Then V̂ 1
T will obviously be dominated by Ŵ 1

T hence also by VT (θ).

Conversely, let X ≤ VT (θ) for some VT (θ). We can find an c.s. V̂ ∈ V̂(ε)

on the boundary yielding terminal wealth V̂ 1
T = VT (θ) and adding a final

(−R+) × {0}-valued jump at time T we obtain a c.s. portfolio process with
terminal value exactly X.

We start with a result of independent interest: in the present setting,
the admissibility condition in Definition 3.15 (iii) can be replaced by a more
intuitive concept, see Proposition 9 of [CS 06] and pages 130–131 of [KS 02].

Proposition 4.5 Suppose that the process S = (St)0≤t≤T satisfies Assump-
tion 1.1 and admits ε-consistent price processes, for each ε > 0.

Then, in the setting of Definition 3.15, the admissibility condition (iii) is
equivalent to the subsequent condition (iii’):

(iii’) there is a threshold M > 0 such that almost surely

V̂t �t −M1, for 0 ≤ t ≤ T. (27)

Note that inequality (27), which can be restated as V̂t+M1 �t 0, requires

that at each time t the portfolio V̂t plus M units of both the bond and the
stock is solvent.

We need a preparatory result:

Lemma 4.6 Fix ε > 0. Under the conditions of Proposition 4.5, for each
0 ≤ t ≤ T and each random variable ft ∈ L1(Ω,Ft, R,P) such that:

(1 − ε)St < ft < (1 + ε)St, a.s

and for each ε′ > ε there is an ε′-strictly consistent price system
(
(S̃u)0≤u≤T ,Q

)

such that S̃t = ft.

Proof Choose δ such that δ +(1+ δ)(ε+ δ)/(1− δ) < ε′. Take an arbitrary
ft and let (W̃t(η), Q̃(η)) be fixed min{η, δ}-consistent price systems, where
η will vary later. We have:

1 − η ≤ gt(η) :=
W̃t(η)

St
≤ 1 + η, (28)

and for ht := ft/St we have

1 − ε < ht < 1 + ε.
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We define, for n ≥ 1, the Ft-measurable events

A+
n := ({1 + nε/(n + 1) > ht ≥ 1 + (n − 1)ε/n}, (29)

A−
n := {1 − (n − 1)ε/n > ht ≥ 1 − nε/(n + 1)}). (30)

Now set Q̃ :=
∑∞

n=1 1A+
n ∪A−

n
Q̃(ε/(9n + 3)) and

W̃u :=

∞∑

n=1

1A+
n∪A−

n

ht

gt(
ε

9n+3
)
W̃u

(
ε

9n + 3

)
, t ≤ u ≤ T. (31)

It is clear that W̃ is a Q̃-martingale on [t, T ] and

W̃t = ft.

Moreover, on A+
n we have for u ∈ [t, T ],

1 − ε <
1 − ε/(9n + 3)

1 + ε/(9n + 3)
≤

ht

gt

(
1 −

ε

9n + 3

)
≤

W̃u

Su
≤

ht

gt

(
1 +

ε

9n + 3

)

≤

(
1 +

nε

n + 1

)
1

1 − ε/(9n + 3)

(
1 +

ε

9n + 3

)
< 1 + ε.

Similarly, on A−
n ,

1 + ε >
1 + ε/(9n + 3)

1 − ε/(9n + 3)
≥

ht

gt

(
1 +

ε

9n + 3

)
≥

W̃u

Su
≥

ht

gt

(
1 −

ε

9n + 3

)

≥

(
1 −

nε

n + 1

)
1

1 + ε/(9n + 3)

(
1 −

ε

9n + 3

)
> 1 − ε,

hence (Q̃, W̃u)t≤u≤T is an ε-strictly consistent price system on [t, T ].
Now set S̃u = W̃u, t ≤ u ≤ T and S̃u := EQ̃(δ)(ft|Fu), 0 ≤ u ≤ t.
We have

|W̃t(δ) − ft| < (ε + δ)St ≤
ε + δ

1 − δ
W̃t(δ),

consequently, for u ≤ t,

|S̃u − W̃u(δ)| < W̃u(δ)
ε + δ

1 − δ
≤ Su

(ε + δ)(1 + δ)

1 − δ
,

thus using (28) for η = δ we get

Su(1 − ε′) < S̃u < Su(1 + ε′).

27



Define the measure Q by setting

dQ

dP
:=

dQ̃(δ)

dP

YT

Yt
,

where Yt = E[dQ̃/dP|Ft].
It is straightforward to check that (S̃,Q) satisfy the requirements.

The following corollary has been used in the proof of Lemma 3.5. The
deterministic time t may be replaced by a stopping time without alteration
in the arguments of the proof.

Corollary 4.7 Under the conditions of Proposition 4.5, for any Ft-measurable
random variable ft and any probability Q ∼ P|Ft

on Ft such that

(1 − ε)St < ft < (1 + ε)St,

there exists an ε-strictly consistent price system ((S̃ ′)t≤u≤T ,Q′) on the inter-
val [t, T ] such that S̃ ′

t = ft and Q′|Ft
= Q.

Proof The construction in the first half of the the proof of Lemma 4.6 yields
W̃ and Q̃ such that W̃t = ft. Define S̃ ′

u := W̃u. Finally set

dQ′

dP
:=

dQ/dP

E(dQ̃/dP|Ft)

dQ̃

dP
.

Proof of Proposition 4.5 We prove that (iii′) implies (iii), the reverse
implication being like Proposition 9 of [CS 06].

By contradiction, if V̂t +M1 /∈ K̂ε
t on a set of positive measure, then also

V̂t + M1 /∈ K̂ ε̃
t for some ε̃ < ε on some (possibly smaller) set B of positive

measure.
Hence (by the measurable selection theorem) there exists an Ft-measurable,

int (K̂ ε̃
t )

∗-valued (bounded) random variable mt such that 〈mt, V̂t +M1〉 < 0
on B.

As ε̃ < ε, by Lemma 4.6 and Proposition 3.12 we obtain a martingale Z
such that Zs ∈ int (K̂ε

s )
∗ for all 0 ≤ s ≤ T and mt = Zt. It follows that

〈Zt, V̂t + M1〉 < 0,

on B, which is absurd by (iii) in Definition 3.15.
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Remark 4.8 Carrying out the above arguments for stopping times instead
of deterministic times it becomes clear that, under the conditions of Propo-
sition 4.5, conditions (iii) and (iii’) are equivalent to

(iii”) there is a threshold a > 0 such that, for each stopping time 0 ≤ τ ≤ T :

V̂τ �τ −a1, a.s..

Proposition 4.9 If V̂ 1
T is the terminal value of an M-admissible (in the

sense of Definition 3.15) c.s. ε-self -financing portfolio process then there is
an M(1 + ε)-admissible θ (in the sense of Definition 1.5) such that V ε

T (θ) ≥

V̂ 1
T .

Proof Remember the c.s. portfolio process on the boundary Ŵ as con-
structed in Corollary 4.4. Let θ be a trading strategy corresponding to Ŵ
(see Proposition 4.2). We need to establish that θ is (1 + ε)M-admissible.
From

Vt(θ) = Ŵ 1
t + Ŵ 2

t St(1 − ε)1{cW 2
t >0} + Ŵ 2

t St(1 + ε)1{cW 2
t <0},

it follows that

Vt(θ) ≥ Ŵ 1
t − M(1 + ε)St ≥ V̂ 1

t − M(1 + ε)St ≥ −M [1 + (1 + ε)St].

5 Local martingales and numéraires

In this paper, Definition 1.4 of an ε-consistent price system requires that S̃
is a true (as opposed to local) martingale under Q. On the other hand, the
frictionless characterization of no arbitrage for continuous processes usually
involves the notion of equivalent local martingale measures, i.e., probability
measures Q ∼ P under which the price process S is a local martingale.

This subtle difference corresponds to the difference in the choice of the
notion of admissibility of self-financing processes, as was made clear — in
the frictionless case — by the work of Ji-An Yan and his co-authors ([Y98],
[XY02], [Y02], see also [DS 95], [SY98] and [Si 96]).

Mathematically speaking, Definition 1.10 of a free lunch as well as the
admissibility condition (iii) in Definition 3.15 involve comparisons with scalar
mulitples of the vector 1 = (1, 1) in R

2. Economically speaking, these in-
equalities compare the portfolio with positions which may be short in each of
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the assets S0, S1. This approach seems quite natural for the applications to
financial markets with transaction costs when there is no natural numéraire
(compare [K 99]).

On the other hand, the classical approach in the frictionless theory is to
consider the bond as numéraire and to formulate the inequalities controling
the portfolio only in units of the bond, not allowing for short positions in the
risky assets. The corresponding notion of admissibility, which compares the
portfolio to the vector (1, 0) rather than to (1, 1), goes back to Harrison and
Pliska [HP81] (compare also to [DS 94] and [DS 06]).

We now proceed in the opposite direction, deriving the numéraire-based
approach in the present transaction cost context where the asset S0 ≡ 1 is
chosen as numéraire.

Definition 5.1 (numéraire-based variant of Definition 3.15) In the set-

ting of Definition 3.15 above we call an ε-self-financing portfolio process V̂
admissible in a numéraire-based sense if there is a threshold, i.e., a constant
M > 0 such that V̂T �T (−M, 0) and 〈Zτ , V̂τ 〉 ≥ −M〈Zτ , (1, 0)〉 a.s. for all
[0, T ]-valued stopping times τ and for every ε-strictly consistent price system
Z ∈ Zs.

Definition 5.2 (numéraire-based variant of Definition 1.10) A given
continuous, adapted R+-valued price process S admits a numéraire-based
arbitrage for small transaction costs if there is ε > 0 and an ε-self financing
portfolio process V̂ , admissible in the numéraire-based sense such that V̂T ∈
R

2
+ a.s. and P[V̂T 6= 0] > 0.

The above numéraire-based notions clearly impose a stronger condition on
the free lunches and the admissible portfolio processes than the ones given in
sections 1 and 3 above. Dually, we have to weaken the concept of ε-consistent
price systems in order to obtain an analogue of Theorem 1.11.

Definition 5.3 (numéraire-based variant of Definition 1.4) Given an
R+-valued (adapted, càdlàg) price process S = (St)0≤t≤T , a numéraire-based

ε-consistent price system is a pair (S̃,Q) such that S̃ = (S̃t)0≤t≤T is an

adapted, càdlàg process satisfying S0 = S̃0 and

1 − ε ≤
S̃t

St
≤ 1 + ε, 0 ≤ t ≤ T,

and Q is a probability measure equivalent to P such that S̃ is a local mar-
tingale under Q.

We now formulate a numéraire-based version of Theorem 1.11.
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Theorem 5.4 (numéraire-based Fundamental Theorem) Let S = (St)0≤t≤T

satisfy the assumptions of Theorem ??. The following assertions are equiva-
lent.

(i) For each ε > 0 there exists a numéraire-based ε-consistent price system.

(ii) There is no numéraire-based arbitrage for small transaction costs.

Proof The technical difference is that we do not consider G(σ, ε), but only
F (σ, ε) this time. The rest follows the proof of Theorem 1.11.

A Appendix: Some examples

Let C+[u, v] denote the set of continuous positive functions on [u, v] and let
C+

x [u, v] denote the positive functions taking the value x at u. In [GRS07]
the following result has been shown:

Theorem A.1 Let (St)t∈[0,T ] be a positive continuous adapted process satis-
fying the conditional full support (CFS) condition, i.e. for all t ∈ [0, T ):

supp P (S|[t,T ]|Ft) = C+
St

[t, T ] a.s. (CFS)

where P (S|[t,T ]|Ft) denotes the Ft-conditional distribution of the C+[t, T ]-
valued random variable S|[t,T ]. Then S admits an ε-consistent pricing system
for all ε > 0.

We start observing the rather obvious fact that there are continuous mar-
tingales S failing the conditional full support (CFS) condition, and therefore
such condition is not necessary for the existence of consistent price systems.

For example, consider a standard Brownian motion (Wt)0≤t≤T defined on
(Ω,F , (Ft)0≤t≤T ,P) and define S by ST = exp(sign(WT )) and

St = E[ST | Ft].

A second easy example shows that the condition (CFS) does not imply
that the law of ST is absolutely continuous with respect to the Lebesgue
measure. Let (qn)∞n=1 be an enumeration of the rationals in R++ and (pn)∞n=1

strictly positive numbers such that
∑∞

n=1 pn = 1. Find a function ϕ : R → Q
such that P[ϕ(WT ) = qn] = pn, for each n ≥ 1. Letting ST = ϕ(WT ) and

St = E[ST | Ft], 0 ≤ t ≤ T
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we have a martingale satisfying (CFS), but such that the law of ST is con-
centrated on the rationals.

We now pass to a less trivial example which shows the limitations of the
“local” Theorem 1.3: Proposition A.2 will show that the assumption (NOA)
is not sufficient to insure the existence of ε-consistent price systems.

Proposition A.2 There is an R++-valued continuous process (St)0≤t≤T which
satisfies the condition of “no obvious arbitrage” (NOA), and yet has no ε-
consistent price system for all ε > 0.

Proof Let (Wt)t≥0 be a standard Brownian motion with respect to the
stochastic base (Ω,F , (Ft)t≥0,Q

0), and define Xt = exp[Wt − t/2] so that
(Xt)t≥0 is a geometric Brownian motion with respect to Q0.

Define a sequence of stopping times (ρn)∞n=1 by ρ0 := 0, ρ1 := inf{t | Xt =
2−2 or 2} and, for n ≥ 1 let

ρn+1 := ρn ·1{Xρn 6=2−2n} + σn+1 ·1{Xρn=2−2n}

where
σn+1 := inf

{
t ≥ 0 | Xt = 2−2n+1

or 2−n+1
}
.

The stopping time τ is defined as

τ = min
{
ρn | Xρn

= 2−n+1
}

and the process S is the process Xτ stopped at time τ , i.e.,

St = Xt∧τ , 0 ≤ t < ∞.

Note that Q0[τ = ∞] > 0. Indeed, since

{τ > ρn} = {Xρn
= 2−2n

} and {τ > ρn+1} = {Xρn+1 = 2−2n+1

}

the martingale property of X implies that

Q0[τ > ρn+1 | τ > ρn] = 1 −
2−2n

− 2−2n+1

2−n+1 − 2−2n+1

and hence Q0[τ = ∞] > 0 as

∞∑

n=1

2−2n

− 2−2n+1

2−n+1 − 2−2n+1 < ∞.
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Next, define a probability measure P on F such that P ≪ Q0, the re-
strictions of P and Q0 to Fρn

are equivalent probability measures on Fρn
,

for each n, and such that
P[τ = ∞] = 0.

For example, define

dP

dQ◦
=

∞∑

k=1

2−n

Q[τ = ρn]
1{τ=ρn},

so that P[τ = ρn] = 2−n, for n ≥ 1.
The market model consists of the price process S under the probability P.

First note that P-a.s. the trajectories of (St)t≥0 become eventually constant so
that we may define S∞ = limt→∞ St and consider the process S = (St)0≤t≤∞

on the closed intervall [0,∞], which is, of course, isomorphic to [0, T ], for any
T ∈ R++. For notational convenience we consider the closed time interval
[0,∞] rather than performing a (cosmetic) deterministic time change to [0, T ].

We now show that S allows no obvious arbitrage. Indeed, supppose that
there are α > 0 and stopping times 0 ≤ κ ≤ λ ≤ ∞ such that P[κ < ∞] > 0
and

Sλ/Sκ ≥ (1 + α), a.s. on {κ < ∞}
or

Sλ/Sκ ≤ (1 + α)−1, a.s. on {κ < ∞}.
(32)

Find n large enough such that P[κ < ρn] > 0. Note that on the set
An = {κ < ρn} we have Sκ ≥ 2−2n

. Find m ≥ n such that 2−m+1 < 2−2n

and
note that (St)ρm<t≤∞ is a.s. bounded from above by 2−m+1. Recall that the
restrictions of P and Q0 to Fρm

are equivalent. As (St)0≤t≤ρm
is a (uniformly

integrable) Q0-martingale we have either

(i): Sκ = Sλ∧ρm
, P-a.s. on An

or
(ii): P[{Sκ > Sλ∧ρm

} ∩ An] > 0 and P[{Sκ < Sλ∧ρm
} ∩ An] > 0.

In case (i) we have Sλ∧ρm
= Sλ P-a.s. on An which gives a contradiction to

(32). Similarly, in the first subcase in case (ii) we have that {Sκ > Sλ∧ρm
} ∩

An = {Sκ > Sλ} ∩ An so that we again find a contradiction to the first
equation of (32). The second subcase leads to a contradiction to the second
equation in (32).

The final part of the proof consists in showing that, there is no ε-consistent
price system for any ε > 0. Fix ε > 0 (and note that we do not exclude that

ε is large, e.g. ε = 1010) and suppose there is a process (S̃t)0≤t≤∞ and a
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probability measure Q on F , equivalent to P, such that (S̃t)0≤t≤∞ is a Q-
martingale and such that

(1 + ε)−1 ≤
S̃t

St
≤ 1 + ε, P-a.s., for 0 ≤ t ≤ ∞.

We shall estimate
qn := Q[τ = ρn+1 | τ > ρn],

for sufficiently large n. We have

S̃ρn
≤ (1 + ε)Sρn

= (1 + ε)2−2n

, a.s. on {τ > ρn},

and

S̃ρn+1 ≥ (1 + ε)−1Sρn+1 =

{
(1 + ε)−12−n+1 on {τ = ρn+1}

(1 + ε)−12−2n+1
on {τ > ρn+1}.

We obtain from the martingale property of S̃ under Q that

EQ

[
S̃ρn+11{τ=ρn+1} | τ > ρn

]
+EQ

[
S̃ρn+11{τ>ρn+1} | τ > ρn

]
= E

[
S̃ρn

| τ > ρn

]

which yields

qn(1 + ε)−12−n+1 + (1 − qn)(1 + ε)−12−2n+1

≤ (1 + ε)2−2n

.

Solving for qn yields

qn

[
(1 + ε)−1

(
2−n+1 − 2−2n+1)]

≤ (1 + ε)2−2n

− (1 + ε)−12−2n+1

,

so that
qn ≤ (1 + ε)22−2n+n.

Hence
∑∞

n=1 qn < ∞. As Q ∼ P we also have that 0 < qn < 1 for all
n ≥ 1, and therefore:

Q[τ = ∞] =

∞∏

n=1

(1 − qn) > 0.

This gives the desired contradiction to Q ∼ P as P[τ = ∞] = 0.
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