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Abstract

Fads models were introduced by Shiller (1984) and Summers (1986) as
plausible alternatives to the efficient markets/constant expected returns
assumptions. Under these models, logarithms of asset prices embody both
a martingale component, with permanent shocks, and a stationary com-
ponent, with temporary shocks.

We study a continuous-time version of these models from both the
point of view of informed agents, who can observe both fundamental and
market values, and from that of uninformed agents, who can only observe
market prices. We specify the asset price in the larger filtration of the
informed agent, and then derive its decomposition in the smaller filtra-
tion of the uninformed agent using the Hitsuda representation of Gaussian
processes. For uninformed agents we obtain a non-Markovian dynamics,
which justifies the use of technical analysis in optimal trading strategies.
For both types of agents, we solve the problem of maximization of expected
logarithmic utility from terminal wealth, and obtain an explicit formula
for the additional logarithmic utility of informed agents.

Finally, we apply the decomposition result to the problem of testing the
presence of fads from market data. An application to the NYSE-AMEX
indices from the CRSP database shows that, if the fads component prevails,
then the mean-reversion speed must be slow. 1
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1 Introduction

In an efficient market, where “prices always fully reflect available information”
(Fama, [Fam70]) asset prices should be martingales, after adjusting for risk. This
paradigm, when combined with the assumption of constant expected returns,
leads to the classical random walk models and to Geometric Brownian Motion
in continuous time.

The validity of these assumptions has been questioned on a number of
grounds. Le Roy and Porter [LP81] and Shiller [Shi81] have argued that the
volatility observed in stock and bond markets is too high to be explained by the
flow of information on fundamentals, such as dividends. To explain this excess of
volatility, Shiller [Shi81] emphasized the role of investor overreactions, fashions
and fads in price shocks. In this spirit, Summers [Sum86] proposed the following
discrete time model for the log price pt of a risky asset in an “inefficient” market:

pt = p∗t + ut (1)
p∗t = p∗t−1 + εt (2)
ut = ρut−1 + δt (3)

where εt and δt are mutually independent, identically distributed innovations,
with finite variances. In this model, the martingale p∗t represents the fundamental
value of the asset, which has permanent shocks. The difference ut = pt − p∗t
represents the current mispricing of the assets, or ‘fad’, which has temporary
shocks. This model provides a plausible alternative to the assumption of constant
expected returns, and accounts for the long term mean-reversion observed in
stock prices by Poterba and Summers [PS88].

To assess the relevance of these models, one has to address two basic ques-
tions: do fads exists? And even if they exist, do they matter? The former
question is essentially a statistical problem, which requires to test the hypothe-
sis that the variance of δt is null. The latter question is a theoretical one, which
can be made precise as follows. For a rational agent (i.e. a utility maximizer)
trading in the asset, to what extent does the presence of fads affect maximum
expected utility and optimal trading strategies?

Both these problems are complicated by a common feature. In the empir-
ical problem, the econometrician can usually observe historical market prices
only, therefore cannot rely on the innovations εt and δt for statistical purposes.
Similarly, the utility maximization problem may lead to very different results,
depending on whether the agent can observe both fundamental and market val-
ues, or market prices only.

This paper addresses these two issues, in a continuous-time version of the
fads model above. We consider two types of agents: informed agents who can
observe both fundamental and market values, and uninformed agents, who can
only observe market values. For both agents we study the problem of logarithmic
utility maximization from terminal wealth, and obtain a closed-form solution for
expected logarithmic utilities. Then we exploit the decomposition of the asset
price dynamics for uninformed agents to statistically test the presence of fads
from market data.

2



It is worthwhile to make a comparison between this model and those of
insider trading recently considered, among others, by Karatzas and Pikovsky
[PK96], Amendinger, Imkeller and Schweizer [AIS98], Baudoin [Bau02], Cor-
cuera, Imkeller, Kohatsu-Higa, Nualart [CIKHN04], and Kohatso-Higa [KH04]
for a recent survey. In these models, the asset price dynamics is specified under
the filtration of the ordinary (uninformed) agent. Then one specifies the ex-
tra information available to the insider, usually some functional of future prices
(possibly disturbed by a noise), which is eventually revealed at the final time T .
The dynamics for the insider is then obtained by an enlargement of filtration
(or, in [Bau02], by conditioning the stochastic differential equation).

By contrast, we specify the asset price process in the larger filtration of in-
formed agents, and then obtain its dynamics for uninformed agents using the
Hitsuda representation of Gaussian processes. We observe that the additional
information of the informed agent continues to grow over time, and is never re-
vealed. However, mean-reversion causes past additional information to gradually
lose value, leading to a finite expected utility.

As we restrict the larger filtration instead of enlarging the smaller one, we
note that from the viewpoint of the uninformed agent, the asset price loses
the Markov property, and optimal investment decisions involve current as well
as past prices. This allows for a suggestive interpretation on the relationship
between fundamental and technical analysis: the informed agent, who has access
to both fundamental and market values, does not care about the price history,
and invests optimally by looking at only the current mispricing. On the other
hand, the uninformed agent is aware of the presence of a mispricing, but cannot
observe it directly, and uses technical analysis to extract from past prices some
information about it.

The rest of the paper is organized as follows: in section 2 we describe the
model in detail, and state the decomposition result, whose proof is postponed
to section 5. In section 3 we solve the logarithmic utility maximization problem,
derive explicit formulas for expected maximum utilities, and obtain a surprisingly
simple asymptotic formula for the additional logarithmic utility, which allows to
perform intuitive comparative statics.

We conclude in section 4 with the econometric application. Results for the
NYSE-AMEX indices from the CRSP data base show that if the fads component
of volatility prevails, as the literature on variance bounds suggests (see Le Roy
and Porter [LP81] and Shiller [Shi81]), then the mean-reversion speed must be
slow. This confirms and improves similar findings of Poterba and Summers
[PS88] and Shiller and Perron [SP85], obtained by Monte Carlo simulations.

The Appendix resumes some technical results used in the paper.

2 The Model

We consider a model of a financial market with one riskless asset B (the money
market) and one risky asset S (the stock market), and assume that the riskless
asset is identically equal to one.
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To describe the dynamics of the risky asset, we consider a probability space
(Ω,F , P ), on which are defined two independent Brownian Motions (Wt)t∈[0,∞)

and (Bt)t∈[0,∞). We denote by Ut the Ornstein-Uhlenbeck process obtained as
the unique solution to the Langevin equation:

Ut = −λ
∫ t

0

Usds+Bt (4)

where λ > 0. We denote by

Yt = pWt + qUt (5)

where p, q > 0 and p2 + q2 = 1. We introduce two deterministic, Lebesgue
measurable functions µt and σt > 0, and define the price of the risky asset St as
the solution to the stochastic differential equation:

dSt = St (µtdt+ σtdYt) (6)

which is given by:

St = S0 exp
(∫ t

0

(
µs −

σ2
s

2

)
ds+

∫ t

0

σsdYs

)
(7)

The economic interpretation of (6) is that price shocks embody both a permanent
component, represented by the martingale W , and a temporary component,
represented by the mean-reverting process Ut. In particular, when q or λ are
null (and µt, σt are constant), we recover the usual Geometric Brownian Motion.

We introduce the two filtrations (F0
t )t∈[0,∞) and (F1

t )t∈[0,∞) which are the
augmentations of the filtrations generated by Y (or equivalently S) and (W,B)
(or equivalently (S,U)) respectively, and thus satisfy the usual conditions of
right-continuity and completeness. We obviously have that F0

t ⊂ F1
t for all t.

Our market is populated by two types of agents: informed agents, with access
to the larger filtration F1

t and uninformed agents, with access to F0
t only. The

underlying idea is that informed agents, who observe both S and U , are aware
at all times of the extent to which the stock market is over (or under) valued,
while uninformed agents only see the market price S.

To avoid common misconceptions, we remark that while this model is a
prototype for an “inefficient” market, it is still free of arbitrage opportunities in
the usual sense. In fact, it is easy to see that St admits an equivalent martingale
measure in the filtration F1, and a fortiori in any smaller filtration. In other
words, St is “inefficient” only insofar as it allows for time-varying expected
returns.

2.1 Asset price dynamics

For informed agents the asset price dynamics (6) can be rewritten as:

dSt = St((µt − λσtqUt)dt+ σtB
1
t )
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where B1
t = pWt + qBt is a Brownian Motion. Our first task is to establish a

similar decomposition for S, or equivalently for the excess return Y , from the
viewpoint of the uninformed agent, that is in terms of some F0

t -Brownian Motion
B0
t .

In principle, one could think of this problem as one of filtering, with the log
fundamental value Wt playing the role of the signal, and the mispricing Ut the
role of the noise. However, the analogy stops here, as the model does not fit
the standard framework of filtering theory. Indeed, in usual filtering problems
the signal is absolutely continuous, while our ‘signal’ Wt is a Brownian Motion,
perturbed by the additive noise Ut, therefore common filtering techniques do not
apply.

In a similarly näıve approach, one might hope to write Y as the solution of
a stochastic differential equation of the form:

dYt = α(t, Yt)dt+ β(t, Yt)dB0
t

but this turns out to be impossible, since Yt fails the Markov property in its
natural filtration. To see this, recall that a Gaussian process has the Markov
property if and only if its covariance function Γ(s, t) satisfies the condition (see
Proposition A.4):

Γ(s, t)Γ(t, u) = Γ(t, t)Γ(s, u) for all s ≤ t ≤ u (8)

which fails for Y (except in the limit case λ = 0):

Cov(Ys, Yt) = E [WsWt] + E [UsUt] = p2(s ∧ t) +
q2

2λ

(
e−λ|t−s| − e−λ(t+s)

)

Furthermore, it is easily seen that the Markov property cannot be recovered even
replacing the process Ut with a stationary Ornstein-Uhlenbeck process.

We have the following result, which is proved in section 5:

Theorem 2.1. Let Yt = pWt+ qUt, and (F0
t )t∈[0,∞) be the augmentation of the

filtration generated by Yt. Let p, q, λ > 0, q2 + p2 = 1. Denote by:

Γ(s) = − 1
λ

log(cosh(λps) + p sinh(λps)) (9)

γ(s) = Γ′(s) = −p tanh(λps+ arc tanh p) =
1− p2

1 + p tanh(pλs)
− 1 (10)

Then the process

B0
t = Yt +

∫ t

0

[
λ (γ(s) + 1)Ys +

∫ s

0

λ2
(
γ(s) + p2

)
eλ(Γ(s)−Γ(u))Yudu

]
ds =

(11)

= Yt + λ

∫ t

0

∫ s

0

eλ(Γ(s)−Γ(u))(1 + γ(u))dYuds (12)
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is a Brownian Motion. The semimartingale decomposition of Yt under F0 is:

Yt = B0
t − λ

∫ t

0

e−λ(t−s)
(
B0
s +

∫ s

0

γ(u)dB0
u

)
ds = (13)

= B0
t − λ

∫ t

0

∫ s

0

e−λ(s−u)(1 + γ(u))dB0
uds (14)

and its canonical representation is:

Yt =
∫ t

0

(
e−λ(t−s)(1 + γ(s))− γ(s)

)
dB0

s (15)

We can read Theorem 2.1 as follows: for the uninformed agent, the asset
price dynamics is:

dSt = St((µt + σtνt)dt+ σtdB
0
t ) (16)

where

νt =− λ (γ(t) + 1)Yt − λ2

∫ t

0

(
γ(s) + p2

)
eλ(Γ(t)−Γ(u))Yudu = (17)

=− λ
∫ t

0

e−λ(t−u)(1 + γ(u))dB0
u (18)

(16) and (17) show that for the uninformed agent, the drift µt + σtνt depends
on the entire past history of the price St. This suggests that optimal trading
strategies will also involve past prices, a practice usually referred to as technical
analysis. The next section precisely addresses this issue in the case of logarithmic
utility.

3 Logarithmic Utility maximization

We now assume that both informed and uninformed agents invest in the market
model described above in the time interval [0, T ], so as to maximize their ex-
pected utility from terminal wealth. Since we are going to consider logarithmic
utility, similar conslusions will hold true for the problem of utility maximization
from intertemporal consumption (cfr. the proof of Theorem 3.1 below). The
discounted portfolio value at time t of an agent starting with initial capital x
and holding Ht shares of the asset S, is given by:

Xt = x+ (H · S)t (19)

Agents are constrained to use admissible strategies, which must be predictable
in their respective filtrations (F it )i=0,1:

Aix =
{
H F i-predictable, S-integrable, x+ (H · S)t ≥ 0 a.s. ∀ t ∈ [0, T ]

}
i = 0, 1
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and solve the usual problem of utility maximization from terminal wealth:

max
{
E [U(XT )] : H ∈ Aix

}
i = 0, 1 (20)

The respective value functions are defined by:

ui(x) = sup
{
E [U(XT )] : H ∈ Aix

}
i = 0, 1 (21)

Since we aim at explicit solutions, we shall consider the logarithmic utility
function U(x) = log x, as in [PK96, AIS98, Bau02, CIKHN04]. For this utility
function, it is convenient to write the portfolio value in exponential form. We
denote by π = HS

X the fraction of wealth in the risky asset, and observe that
(19) can be rewritten as:

Xt =x exp
(∫ t

0

(
πsµs − π2

s

σ2
s

2

)
ds+

∫ t

0

πsσsdYs

)
= (22)

=x exp
(∫ t

0

πsµsds

)
E ((πσ) · Y )t (23)

where E (X) = exp
(
X − 1

2 〈X〉
)

denotes the usual Doleans exponential.
We show the following:

Theorem 3.1. For the logarithmic utility function:

i) The value functions uii=0,1 and the optimal strategies πii=0,1 are given by:

π0
t =

µt + σtνt
σ2
t

u0(x) = log x+
1
2
E

[∫ T

0

(µt + σtνt)2

σ2
t

dt

]
(24)

π1
t =

µt − λσtqUt
σ2
t

u1(x) = log x+
1
2
E

[∫ T

0

(µt − λσtqUt)2

σ2
t

dt

]
(25)

where νt is given by (17).

ii) We have the following asymptotics, as T →∞:

u0(x) ∼ 1
2

∫ T

0

µ2
t

σ2
t

dt+
λ

4
(1− p)2T u1(x) ∼ 1

2

∫ T

0

µ2
t

σ2
t

dt+
λ

4
(1− p2)T

(26)

and therefore the additional logarithmic utility of the informed agent is
given by:

u1(x)− u0(x) ∼ λ

2
p(1− p)T (27)
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Theorem 3.1 provides a quantitative assessment of the long-term impact of
fads, for informed and uninformed agents, and immediately allows to perform
some simple comparative statics. The additional logarithmic utility is propor-
tional to the mean reversion speed λ: this is intuitively clear, because when
temporary shocks are quickly absorbed, the informed agent can immediately
profit from them, while the uninformed still ponders whether they are tempo-
rary of permanent.

The additional logarithmic utility is null in both cases p = 0 and p = 1.
In the latter case the market is efficient, and there is no mean-reversion to be
exploited. In the former case all shocks are temporary, therefore all agents can
equally exploit mean-reversion, and there is no informational advantage. The
highest utility gap is achieved for (p, q) = ( 1

2 ,
√

3
2 ), in which case the temporary

shocks account for three quarters of the variance, and the permanent shocks for
the remaining fourth.

To gain a better intuition of the quantities involved, we can also reformulate
(24, 25) in terms of expected returns instead of additional utilities. More pre-
cisely, we ask the question: how much should the expected return increase, to
compensate for the absence of mean-reversion? We denote (with a slight abuse of
notation) by µ0 and µ1 the expected returns which make an uninformed (resp.
informed) agent indifferent between a market with parameters (µ, σ, λ, p) and
one with parameters (µ0, σ, 0, p) (resp. (µ1, σ, 0, p)). From (24, 25) we have:

µ0 =

√
µ2 +

λ

2
(1− p)2σ2 µ1 =

√
µ2 +

λ

2
(1− p2)σ2 (28)

These formulas highlight two other features: first, the equivalent additional
returns µ0 − µ and µ1 − µ are decreasing in µ. When µ is low, mean-reversion
generates a large fraction of expected utility, so its elimination requires a big
increase in µ. Also, equivalent additional returns are increasing in σ: when
volatility is high, the fraction of expected utility generated by the term 1

2
µ2

σ2T is
low, and mean-reversion is again responsible for most of the expected utility.

Table 1 illustrates the above formulas for some typical parameter values (see
section 4 as well as Poterba and Summers [PS88] and Shiller and Perron [SP85]
for a discussion on ‘typical’ parameter values). In particular, it shows that for
a wide range of values of µ and p, the equivalent additional return gap between
uninformed and informed agents remains between 0.5% and 2%. Thus, in the
metaphore of uninformed agents as technical analysts and of informed agents as
fundamental analysts, we are tempted to conclude that the value of fundamental
analysis is within the mentioned range. Needless to say, such an interpretation
must be taken with care, as it hinges on many disputable assumptions, such as
the fads model for asset prices, the choice of logarithmic utility, the long-term
asymptotics approximation, and the plausibility of parameter values.

After discussing the economic interpretation of Theorem 3.1, let us look at
its proof. To sketch the main idea, we first give a heuristic argument. Recall
that the expected terminal logarithmic utility for a dynamics of the type:

dSt = St(αtdt+ σtdBt)
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p = 25% p = 50% p = 75%

µ µ0−µ µ1−µ µ0−µ µ1−µ µ0−µ µ1−µ
0 3.98 5.13 2.65 4.59 1.33 3.51
1 3.10 4.23 1.83 3.70 0.66 2.65
2 2.45 3.51 1.32 3.01 0.40 2.04
3 1.98 2.95 1.00 2.49 0.28 1.62
4 1.64 2.51 0.80 2.09 0.21 1.32
5 1.39 2.17 0.66 1.79 0.17 1.11
6 1.20 1.90 0.56 1.56 0.14 0.95
7 1.05 1.68 0.49 1.37 0.12 0.83
8 0.93 1.51 0.43 1.22 0.11 0.74
9 0.84 1.36 0.38 1.10 0.10 0.66

10 0.76 1.24 0.35 1.00 0.09 0.60

Table 1: Equivalent additional returns (%) for uninformed (µ0 − µ) and informed (µ1 − µ)
agents, for different values of the expected return µ and of the weight p of the fads component.
The mean-reversion parameter λ is equal to 25%, which corresponds to a half time of fads of
about three years, and volatility σ is set at 15%.

is generally given by the formula (cf. [PK96], [AIS98]):

1
2
E

[∫ T

0

α2
t

σ2
t

dt

]
(29)

For the informed agent the asset dynamics is:

dSt
St

=(µt − λqUtσt)dt+ σtB
1
t (30)

while for the uninformed agent, for large values of t (16) and (17) imply that:

dSt
St
≈(µt − λ(1− p)Ytσt)dt+ σtB

0
t (31)

If we apply formula (29) to (30) and (31), we formally obtain:

u1(x)− u0(x) ≈ 1
2

(
E
[
(λqUt)

2
]
− E

[
(λ(1− p)Yt)2

])
T ≈ λ

2
p(1− p)T (32)

Of course, this is just an heuristic argument, and a rigorous proof requires to
show that formula (29) indeed applies to this case, and that the terms neglected
in (31) and (32) are of an order smaller than T . This is precisely accomplished
by the following:

Proof. In both cases of informed and uninformed agents we use the convex du-
ality method in the version of Proposition A.2, hence we look for a probability
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measure Q and a strategy π which satisfies assumptions i)−iv) in the mentioned
Proposition. If Q is a probability equivalent to P , we introduce Zit = E

[
dQ
dP

∣∣∣F it],
which is a strictly positive P -martingale under F it , and therefore can be written
as a Doleans exponential.

Let us first consider the case of informed agents. By the predictable repre-
sentation property of the filtration F1

t we may write Z1 as:

Z1 = E (θ ·W + η ·B) = E (θ ·W ) E (η ·B) (33)

where the second equality follows from the independence of W and B. By Itô’s
formula, the Q-local martingale condition for S implies that:

µs − λσsqUs + σspθs + σsqηs = 0 a.s. in dPdt (34)

Then condition ii) of Proposition A.2 becomes:

1
x

exp

(
−
∫ T

0

πsµsds+ 〈πσ · Y 〉T

)
E (−(πσ · Y ))T = yE (θ ·W )T E (η ·B)T

(35)

If we solve the above equation simultaneously for all T , we obtain an a.s. equality
between semimartingales. To achieve equality between the martingale parts, we
need the following conditions:

θs =− πsσsp (36)
ηs =− πsσsq (37)

Solving (34,36,37) for θs, ηs, πs, we obtain

πs =
µs − λσsqUs

σ2
s

θs = −pµs − λσsqUs
σs

ηs = −qµs − λσsqUs
σs

(38)

and it is easily seen that this is a solution of (35) with y = 1/x. To ensure that
this π is the optimal strategy, it remains to check that dQ

dP = Z1
T defined by (33)

with θ, η as in (38) indeed defines a probability density, and that assumptions i)
and iii) in Proposition A.2 hold.

Z1
T is a probability density if and only if Z1 is martingale (and not merely

a local martingale). To achieve this, we observe that both θ and η are Gaus-
sian processes, and conclude by Proposition A.3 (a modification of the Novikov
criterion for Gaussian integrands). Assumptions i) and iii) follow directly from
Theorem 2.2 in [KS99].

For uninformed agents, the market is complete, and the only possible choice
for Q is given by Z0

t = E
(
ζ ·B0

)
, where ζt = −(µtσt + νt). As in the previous

case, the martingale property of Z follows by Lemma A.3, observing that ν is a
Gaussian process, and the other assumptions i)− iv) follow similarly.

We now calculate the value functions u1, u0. We have:

ui(x) = E

[
log

1
yZiT

]
= log x− E

[
logZiT

]
i = 0, 1
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For Z1, the second term can be calculated as:

E
[
logZ1

T

]
= E

[
(θ ·W )T + (η ·B)T −

1
2

∫ T

0

(θ2
s + η2

s)ds

]

Since θ and η are Gaussian processes, the two stochastic integrals are uniformly
integrable martingales by the Burkholder-Davis-Gundy inequalities, and their
expectation is zero. Substituting (38) then provides the second part of (25), and
integrating we obtain:

u1(x) = log x+
1
2

∫ T

0

µ2
t

σ2
t

dt+ λ2q2 1
2

∫ T

0

E
[
U2
t

]
dt = (39)

= log x+
1
2

∫ T

0

µ2
t

σ2
t

dt+
λq2

4
T − 1

8
q2(1− e−2λT ) (40)

where he have used the fact that Ut has zero mean. Likewise, for u0(x) we have:

u0(x) = log x+
1
2

∫ T

0

µ2
t

σ2
t

dt+
1
2

∫ T

0

E
[
ν2
t

]
dt (41)

and the last term can be computed using (18):

∫ T

0

E
[
ν2
t

]
dt = λ2

∫ T

0

(∫ t

0

e−λ(t−u)(1 + γ(u))dB0
u

)2

dt =

= λ2

∫ T

0

∫ t

0

e−2λ(t−u)(1 + γ(u))2dudt =

=
(1 + p)2

T λ

2
−log(1−p+e2 p T λ (1 + p))+

1
4
(
(−1 + p2)(1− e−2T λ) + log(16)

)
∼

∼ 1
2
Tλ(1− p)2

which completes the proof.

4 Estimation

We now apply 2.1 to the problem of estimation from real data. We consider the
following model for discounted asset prices:

St = S0 exp
((
ρ− 1

2
) ∫ t

0

σ2
sds+

∫ t

0

σsdYs

)
(42)

where Yt is defined by (5). This model is obtained by (7) assuming that the
market price of risk ρ = µs

σ2
s

is constant.
Our data set consist of 925 monthly observations of the value-weighted and

equal-weighted NYSE-AMEX indices of the CRSP data base for the 77-year
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Figure 1: Significance levels of λ (horizontal axis) and p (vertical axis) for the value weighted
(left) and equally weighted (right) NYSE-AMEX CRSP monthly indices over the period
1925:12-2002:12. The curves represent the significance levels (from white to black) 0.01, 0.025,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7.

period 1925:12-2002:12. To calculate discount factors we use CRSP monthly
rates for Treasury bills over the same period.

Since we want to concentrate on λ and p, which are the parameters specific for
the fads model under consideration, we start estimating ρ and σt with standard
techniques. To control for weak forms of heteroscedasticity, we first apply a data
transformation, which turns an equally spaced discrete-time observation from a
heteroscedastic process into an unequally spaced discrete-time observation of an
approximately homoscedastic process.

We subdivide the entire period into subintervals [ti, ti+1] of 6 months each
(using 12 months one obtains similar results). On each subinterval we calculate
the usual maximum likelihood estimator σ̂i for the volatility σt. Then, assuming
σt constantly equal to σ̂i on each subinterval [ti, ti+1], we calculate the maximum
likelihood estimator for market price of risk ρ, which is unique for the entire
period. Then we define the sequence of times t̂0 = 0, t̂i+1 = t̂i + σ̂2

i (ti+1 − ti),
and the sequence of values y0 = 0,

yt̂i+1
= yt̂i +

log
(
Sti+1
Sti

)
− ρ̂ σ̂2

i (ti+1 − ti)

σ̂i

In practice, we estimate the intrinsic time of the diffusion
∫ t

0
σsdYs from the

data, and reconstruct Yt at a smaller frequency. The approximation consists in
estimating t̂i, and if one could calculate t̂i exactly as

∫ ti
0
σ2
sds, the process yt̂i

would be perfectly homoscedastic.
From the above procedure we obtain 155 observations, from which we esti-

mate λ and p. To do this, we assume that yt = yt̂i for t ∈ [t̂i, t̂i+1), and use
first (53) then (45) to estimate a discrete-time observation of B̃t. Note that one
could have used (11) instead.
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To check that this discretization is consistent, we have performed a Monte
Carlo experiment, generating 10000 paths of the process (5). For each path,
we estimated B̃t from (53) and (45), calculating the sample means of various
functionals. Then we calculated the theoretical population means of the same
functionals, and the sample means from the simulation of the same number of
paths of a Brownian Motion. The three quantities obtained showed no statis-
tically significant differences. All the Mathematica code used in this paper is
available from the author upon request.

From the discrete-time observation B̃t (which depends on λ and p through
(53) and (45)), the likelihood of the path is immediately calculated, and the
results are shown in Figure 4. The white areas represent the pairs of parameter
values which can can be rejected at a confidence level greater than 1%, and the
curves represent level sets of the significance level.

The main message of the Figure 4 is the following: if the temporary compo-
nent of price shocks q is to dominate the permanent component p, as the work of
Le Roy and Porter [LP81] and Shiller [Shi81] on variance bounds suggest, then
the speed of mean reversion must be very slow. In particular, λ must be roughly
less than 2 at a 1% confidence level, which means that the half life of temporary
shocks must be greater than 4 months. On the other hand, if mean reversion is
slow then there is no way to discriminate from the data if the asset price follows
a martingale (p = 1), an Ornstein-Uhlenbeck process (p = 0), or anything in
between. This is shown by the fact that, in both pictures, the segment λ = 0 is
contained in the confidence sets with levels 1%, 2.5% and 5% (as well as 10% for
the equally weighted index).

5 Proof of Theorem 2.1

To prove Theorem 2.1 above, we need to introduce some preliminaries on L2

kernels. We denote by I = [0,+∞), and by L2(I) and L2(I2) the separable
Hilbert spaces of real-valued, square-integrable functions, defined up to negligible
sets of their respective Lebesgue measure.

There is a canonical isometry between the space of kernels L2(I2) and the
space of Hilbert-Schmidt operators from L2(I) to itself. More precisely, each
kernel k induces the linear operator K : L2(I) 7→ L2(I) defined by

K : x 7→ Kx (Kx)(t) =
∫ t

0

k(t, s)x(s)ds

and viceversa (see Dunford and Schwartz [DS88] for details). Given two such
operators H and K, associated to the kernels h and k, we denote by HK their
composition, which is easily seen to be associated to the kernel∫ ∞

0

h(t, u)k(u, s)du

The negative resolvent of an operator K is defined as the unique (if it exists)
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operator K̃ which satisfies the equality:

K + K̃ = K̃K

Finally, we say that k is a Volterra kernel if k(t, s) = 0 for all s > t, and recall
that if the operator K is associated to a Volterra kernel k, then its negative
resolvent K̃ exists, and can be calculated via the Neumann series (see Theorem
2.7.1 in Smithies [Smi58]):

K̃ = −
∞∑
n=1

Kn (43)

To study the dynamics of the process Yt, it is useful to introduce the following
auxiliary process, which has a simpler covariance structure:

Lemma 5.1. Let Zt be defined by:

Zt = qBt + pWt + λp

∫ t

0

Wsds (44)

where p, q, λ > 0, and p2 + q2 = 1. We have that the process:

B0
t = Zt −

∫ t

0

(∫ s

0

g(s, u)dZu

)
ds (45)

is a Brownian Motion, and the semimartingale decomposition of Zt in its natural
filtration is given by:

Zt = B0
t − λ

∫ t

0

∫ s

0

γ(u)dB0
uds (46)

where γ is defined by (10), and g(t, s) is defined by:

g(t, s) =

{
−λγ(s)eλ(Γ(t)−Γ(s)) for 0 ≤ s ≤ t
0 otherwise

(47)

Proof. It is clear that Z is a Gaussian process with zero mean. To compute its
covariance, we can rewrite Zt as:

Zt = qBt + p

∫ t

0

(1 + λ(t− u))dWu

Then it follows that:

Cov(Zt, Zs) =E [ZtZs] = q2t ∧ s+ p2

∫ t∧s

0

(1 + λ(t− u))(1 + λ(s− u))du =

=t ∧ s+ p2

(
λst+ λ2(t ∧ s)2

(
1
2

(t ∨ s)− 1
6

(t ∧ s)
))

=

=t ∧ s+ p2

∫ t

0

∫ s

0

(λ+ λ2u ∧ v)dudv =

=t ∧ s−
∫ t

0

∫ s

0

f̃(u, v)dudv
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where f̃(u, v) = −p2(λ+ λ2u ∧ v).
We proceed by proving (46) first. From Proposition 2 in Hitsuda [Hit68] (or

equation (16) in Cheridito [Che03]), it follows that if g̃ satisfies the following
integral equation:

f̃(t, s) = g̃(t, s)−
∫ s

0

g̃(t, u)g̃(s, u)du for 0 ≤ s ≤ t (48)

then there exists a Brownian Motion B0
t such that

Zt = B0
t −

∫ t

0

∫ s

0

g̃(s, u)dB0
uds (49)

is satisfied. We note that in our case:

f̃(t, s) = −p2(λ+ λ2t ∧ s) = −p2(λ+ λ2s) for 0 ≤ s ≤ t

therefore f̃ is independent of the first variable (for 0 ≤ s ≤ t). This suggests to
look for a solution of the form:

g̃(t, s) =

{
λγ(s) for 0 ≤ s ≤ t
0 otherwise

Then (48) becomes:

−p2(λ+ λ2s) = λγ(s)− λ2

∫ s

0

γ(u)2du for 0 ≤ s ≤ t (50)

In fact, (50) is clearly equivalent to the Cauchy problem:{
γ′(s) = λ(γ(s)2 − p2)
γ(0) = −p2

(51)

which admits the unique solution (10) (the inverse tangent is well-defined, as
p ∈ (0, 1)).

To prove (45), we use again the Hitsuda representation (see Theorems 1’ and
2’ in Hitsuda [Hit68] or Theorem 2 in Cheridito [Che03]), which states that B0

t

can be written as:

B0
t = Zt −

∫ t

0

(∫ s

0

g(s, u)dZu

)
ds

where g(t, s) denotes the negative resolvent of g̃(t, s). Then an application of
Lemma 5.2 yields (45).

Lemma 5.2. Let k ∈ L2(I2) the Volterra kernel defined by:

k(t, s) =

{
β(t)α(s) for 0 ≤ s ≤ t
0 otherwise
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and K the associated Hilbert-Schmidt operator. Then its negative resolvent K̃
exists, and its kernel k̃(t, s) is given by:

k̃(t, s) =

{
−k(t, s)e

∫ t
s
k(u,u)du for 0 ≤ s ≤ t

0 otherwise

Proof. Since k is a Volterra kernel, then its negative resolvent exists and is given
by (43). Denoting by kn the kernel associated to Kn, we see by induction that:

kn(t, s) =

β(t)α(s)
(n−1)!

(∫ t
s
β(u)α(u)du

)n−1

for 0 ≤ s ≤ t
0 otherwise

(52)

For n = 1, (52) is trivial. Assuming it holds for n, for 0 ≤ s ≤ t we have that:

kn+1(t, s) =
∫ ∞

0

k(t, u)kn(u, s)du =
∫ t

s

β(t)α(u)kn(u, s)du =

=
β(t)α(s)
(n− 1)!

∫ t

s

β(u)α(u)
(∫ u

s

β(v)α(v)dv
)n−1

du =
β(t)α(s)

n!

(∫ t

s

β(u)α(u)du
)n

which proves the inductive step. From (52) it follows that:

k̃(t, s) = −
∞∑
n=0

β(t)α(s)
n!

(∫ t

s

β(u)α(u)du
)n

= −k(t, s)e
∫ t
s
k(u,u)du for 0 ≤ s ≤ t

which concludes the proof.

We can now proceed with the proof of Theorem 2.1:

Proof of Theorem 2.1. It is easily seen that:

Yt = −λ
∫ t

0

Ysds+ Zt (53)

where Zt is defined by (44). We use Lemma 5.1, and substituting (53) in (45),
we obtain that:

Yt + λ

∫ t

0

Ysds =
∫ t

0

∫ s

0

g(s, u)dYu ds+ λ

∫ t

0

∫ s

0

g(s, u)Yudu ds+B0
t (54)

Integrating by parts, and denoting by G(s, u) = eλ(Γ(s)−Γ(u)), we have that:∫ s

0

g(s, u)Yudu = G(s, s)Ys −
∫ t

0

G(s, u)dYu (55)
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and substituting (55) in (54) we obtain (12). Then (11) can be obtained inte-
grating (12) by parts. (14) follows applying Lemma 5.2 to (12). To prove (13),
notice that (53) implies that:

Yt =
∫ t

0

e−λ(t−s)dZs (56)

Substituting (46) in (56) we obtain:

Yt =
∫ t

0

e−λ(t−s)dB0
s −

∫ t

0

e−λ(t−s)
(∫ s

0

λγ(u)dB0
u

)
ds (57)

and integrating by parts the stochastic integral:

Yt = B0
t −

∫ t

0

λe−λ(t−s)
(
B0
s +

∫ s

0

γ(u)dB0
u

)
ds

which proves (13). Finally, to show (15), rewrite (57) as:

Yt =
∫ t

0

e−λ(t−s)dB0
s −

∫ t

0

λγ(u)
(∫ t

u

e−λ(t−s)ds

)
dB0

u =

=
∫ t

0

(
e−λ(t−s)(1 + γ(s))− γ(s)

)
dB0

s

A Appendix

The following is a classical duality criterion for optimality, in the spirit of
[KLSX91] and [KS99]. Although the result is well-known, the assumptions used
by different authors often differ slightly. We report the exact version used in
this paper, along with its standard proof.

Assumption A.1. A utility function U : (0,∞) 7→ R satisfies the Inada con-
ditions if it is strictly increasing, strictly concave, continuously differentiable,
and

U ′(0+) = +∞, U ′(+∞) = 0 (58)

Proposition A.2. Let (St)t∈[0,T ] be a semimartingale, U a utility function sat-
isfying Assumption A.1, and denote by I = (U ′)−1.

If there exists a probability Q equivalent to P , an admissible strategy Ĥ with
terminal wealth X̂T = x+ (Ĥ · S)T , and a Lagrange multiplier y > 0 such that:

i) EQ

[
X̂T

]
= x

ii) X̂T = I(y dQdP )
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iii) E
[
V (y dQdP )

]
<∞

iv) S is a Q-local martingale on [0, T ]

Then Ĥ is an optimizer for problem (20), and the maximal expected utility is
given by u(x) = E

[
U
(
I
(
y dQdP

))]
.

Proof. As usual, we denote the convex dual of U as:

V (y) = supx>0 (U(x)− xy) for y > 0

It is clear that:

U(X) ≤ XY + V (Y ) for all X,Y ≥ 0

substituting Y = y dQdP and X = XT = (H · S)T we have:

E [U(XT )] ≤ yE
[
XT

dQ

dP

]
+ E

[
V

(
y
dQ

dP

)]
(59)

For any admissible strategy H, the gain process (H · S) is a Q-local martingale
bounded from below, hence a supermartingale. This implies that:

EQ [XT ] = EQ [x+ (H · S)T ] ≤ x (60)

(59) and (60) provide an upper bound for the maximal expected utility, which
is finite by assumption iii). It is sufficient to show that this bound is attained.
In fact, by i) and ii) we have:

E
[
U(X̂T )

]
= yEQ

[
X̂T

]
+ E

[
V

(
y
dQ

dP

)]
= xy + E

[
V

(
y
dQ

dP

)]
(61)

which concludes the proof.

The following lemma is a substitute of the Novikov criterion for Gaussian
integrands (cf. VIII.1.40 in [RY99] or 3.5.14 in [KS91]):

Lemma A.3. Let B be a F0
t -Brownian Motion, and H a Gaussian process,

adapted to F0
t . Then E (H ·B) is a martingale.

Proof. Since E (H ·B) is a local martingale, we only need to prove that
E [E (H ·B)t] = 1 for all t. Let t0 = 0 < t1 < . . . < tn = t a partition of
[0, t]. Then we have that:

E [E (H ·B)t] = E

[
n∏
i=1

E

[
E (H ·B)ti
E (H ·B)ti−1

∣∣∣∣∣F0
ti−1

]]
(62)

and it suffices to show that for some partition (ti)ni=0, each of the conditional
expectations in the right-hand side is equal to 1. To this purpose, we choose
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an equally spaced partition, with ti − ti−1 = δ for all i, and apply the Novikov
criterion to the local martingales M i

s = E (H ·B)ti−1+s /E (H ·B)ti−1
on [0, ti −

ti−1]. We have that:

E

[
exp

(
1
2
〈
M i
〉
ti−ti−1

)]
= E

[
exp

(
1
2

∫ ti

ti−1

H2
sds

)]
≤

≤ 1
δ

∫ ti

ti−1

E

[
exp

(
δ

2
H2
s

)]
ds (63)

where the last inequality follows from Jensen’s. Since Hs is a Gaussian random
variable, E

[
exp

(
δ
2H

2
s

)]
< ∞ if and only if δVar(Hs) < 1, therefore it suffices

to choose δ < 1/(sups∈[0,t] Var(Hs)). This completes the proof.

The following is a necessary and sufficient condition for a Gaussian process
to be Markov (see III.1.13 in [RY99]):

Proposition A.4. A centered Gaussian process (Xt)t≥0 with covariance func-
tion Γ is Markov if and only if, for all s ≤ t ≤ u, we have:

Γ(s, u)Γ(t, t) = Γ(s, t)Γ(t, u)

Proof. The claim is trivial when Γ(t, t)=0. Otherwise, since a Gaussian process
is determined by its covariance structure, the Markov property is equivalent to:

E [XsXu |Xt ] = E [Xs |Xt ]E [Xu |Xt ]

for all s ≤ t ≤ u. The conditional expectations in the right-hand side can be
calculated as projections:

E [Xs |Xt ] =
E [XsXt]
E [X2

t ]
Xt =

Γ(s, t)
Γ(t, t)

Xt E [Xu |Xt ] =
Γ(u, t)
Γ(t, t)

Xt

It follows that:

Γ(s, u) = E [XsXu] = E [E [XsXu |Xt ]] = E

[
Γ(s, t)Γ(t, u)

Γ(t, t)2
X2
t

]
=

Γ(s, t)Γ(t, u)
Γ(t, t)

which concludes the proof.
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