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Abstract. We consider shape optimization problems of the form

min

{ ∫

∂A

f(x, ν(x)) dHn−1 : A ∈ A
}

where f is any continuous function and the class A of admissi-
ble domains is made of convex sets. We prove the existence of an
optimal solution provided the domains satisfy some suitable con-
straints.

1. Introduction

The problem of finding the shape with least resistance for a body
moving in a fluid has a long history: it was first posed in 1685 by
Newton in his Principia Mathematica, at the early stages of Calculus
of Variations.

Newton’s model was very simple: he supposed a fluid is made of
many particles of equal mass, and the resistance is given by the elastic
interactions between the particles and the front part of the body. Ef-
fects due to viscosity and turbulence are thus neglected by this model,
which nevertheless gives good results in some interesting cases, as for
bodies moving in an ideal gas with high Mach number, for rarefied
gases and low speed, and in the case of slender bodies (see for instance
Funk [4], and Miele [7] for several interesting applications).

From the mathematical point of view, Newton’s model provides a re-
sistance functional which has many unpleasant properties: in fact it is
neither coercive nor convex, so the classical direct method does not pro-
vide the existence of a minimum, unless we put additional constraints
on the class of admissible bodies.

In the radial case (i.e. considering only shapes with circular section
and prescribed cylindrical symmetry), Newton himself guessed the so-
lution, which in this case is unique, and observed some qualitative
properties that hold in general, although the first proof of existence
was given by Kneser [5] in 1902.
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In recent years new interest has raised about Newton’s problem:
Marcellini [6] found a new proof of existence in the radial case, which
provides also the concavity of the minimizer and the validity of Euler’s
equation. The nonparametric problem without symmetry (i.e. for pro-
files which are graphs of Cartesian functions defined on a fixed open
set) was studied by Buttazzo & Kawohl [3] and Buttazzo, Ferone & Ka-
wohl [2], who established the existence of minimizers in the classes of
concave and superharmonic Cartesian profiles. Moreover, Brock, Fer-
one & Kawohl [1] proved that, even in the case of prescribed circular
cross section, the minimizers do not fulfill any cylindrical symmetry.

In order to address the parametric problem, here we present a differ-
ent approach, which allows us to write Newton’s functional indepen-
dently of the local representation. Indeed, the Newtonian resistance of
a n-dimensional body E can also be written in the form

F (E) =

∫

∂E

f(x, ν(x)) dHn−1 ,

with f(x, ν) = ((a · ν)+)3, being a the direction of motion.
More generally, we consider cost functionals of the above form with a

continuous function f and we prove an existence result for minimizers
of F in the classes

CK,Q = {E convex subset of Rn: K ⊂ E ⊂ Q}
CV,Q = {E convex subset of Rn: E ⊂ Q, |E| ≥ V } .

Finally, in the last section we let also the “cross section” vary in a
suitable class, and we show that the existence of a minimum can be
obtained under some constraints.

2. Preliminaries and Main Result

Let E ⊂ Rn be a smooth body, whose profile is defined by the
graph of a function u : Ω → R, where Ω is an open subset of Rn−1.
Following Newton’s assumptions, suppose that the fluid is made of
several particles moving vertically (i.e. orthogonally to Ω) with the
same velocity. Assume also that each particle hits E elastically and
only once, and that the body is constrained on a vertical guide, so that
the horizontal components of the shocks are neglected.

As it is easily seen in figure 1, the momentum that E receives is
proportional to sin2 θ, where θ is the incidence angle of the particle with
respect to the tangent plane to E in the hitpoint. Expressing sin2 θ as

1
1+|∇u|2 and integrating over Ω, we obtain the following expression for

the resistance, up to multiplication by a constant depending on the
fluid’s velocity and density:

F (u) =

∫

Ω

1

1 + |∇u|2 dx .(1)
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Figure 1. Newton’s model for resistance

By Rademacher’s theorem, this functional is well defined on every lo-
cally Lipschitz function, but the assumption that each particle hits the
body only once implies some complicated constraints on the geometry
of the body (see [2] for more details). However, this single shock prop-
erty is always satisfied by convex profiles, so the choice of working with
concave functions looks quite convenient. In fact, in [2] it is proved
that (1) has a minimum in the class CM , defined as follows:

CM = {u concave on Ω : 0 ≤ u ≤ M} .

A different approach to the problem consists of writing (1) only in
terms of the set E, without dependence on its Cartesian representation.
Denoting by ν(x) the exterior normal to E in x, we have that

ν =
(−∇u, 1)√
1 + |∇u|2 and

d(Hn−1 graf u)

d(Ln−1 Ω)
=

√
1 + |∇u|2 =

1

νn

,

where νn denotes the n-th component of ν. Thus, changing variable
with respect to x 7→ (x, u(x)), the resistance can be written in the form

F (u) =

∫

Ω

ν2
n dx =

∫

graf u

ν3
n dHn−1 =

∫

∂E

(ν+
n )3 dHn−1 ,

where in the last equality the positive part is used in order to neglect
the integral on ∂E \ graf u. Note that since convex sets are locally
Lipschitz, the exterior normal ν is defined for a.e. point of the boundary
∂E. Thus the previous expression makes sense for each convex set E,
and we can define the new functional as

F (E) =

∫

∂E

(ν+
n )3 dHn−1 .(2)

In general, we consider minimum problems of the form

min
{
F (E) : E ∈ A}
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where the functional F is given by

F (E) =

∫

∂E

f(x, ν(x)) dHn−1

with f continuous, and the class A of admissible sets is a class of convex
sets. More precisely we consider the classes

CK,Q = {E convex subset of Rn: K ⊂ E ⊂ Q}
CV,Q = {E convex subset of Rn: E ⊂ Q, |E| ≥ V } ,

where K and Q are two compact subsets of Rn and V is a positive
number. Denoting by Sn−1 the (n − 1)-dimensional sphere in Rn, the
main result of this paper can be stated as follows:

Theorem 2.1 Let f : Rn × Sn−1 7→ R be a bounded continuous func-
tion. For each convex E ⊂ Rn we set

F (E) =

∫

∂E

f(x, ν(x)) dHn−1 .

Then the minimum problems

min
E∈CK,Q

F (E) and min
E∈CV,Q

F (E)

admit at least one solution.

The proof of the theorem requires some tools of geometric measure
theory that we recall briefly (see for instance Ziemer [10] for a complete
discussion on the topic):

Theorem 2.2 Let Ω ⊂ Rn be a bounded open set. Then each
bounded subset of the space BV (Ω) is relatively compact with respect
to the strong L1

loc(Ω) convergence.

Definition 2.3. For each Borel measure µ on Rn with values in Rn

and each Borel subset B of Rn we define the variation of µ on B as

|µ|(B) = sup
{Bn}∈P(B)

∑
n

|µ(Bn)| ,

where P(B) is the class of countable partitions of B. We denote by
M the class of all measures µ such that |µ|(Rn) < +∞, and for each
µ ∈M we set

‖µ‖ = |µ|(Rn) .

Definition 2.4. Let (µh) be a sequence of measures in M. We say
that (µh) converges in variation to µ if (µh) tends to µ in the weak *
convergence of measures and limh→∞ ‖µh‖ = ‖µ‖.
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The following theorem was first proved by Reshetnyak [8], and es-
tablishes the continuity of a large class of functionals with respect to
the convergence in variation:

Theorem 2.5 (Reshetnyak [8]) Let f : Rn × Sn−1 → R a bounded con-
tinuous function. Then the functional F : M→ R defined as

F (µ) =

∫

Rn

f(x, νµ) d|µ|

is continuous with respect to the convergence in variation. Here νµ

denotes the Radon-Nikodym derivative dµ
d|µ| .

For convex sets the following representation of Hn−1 ∂E holds,
where χE denotes the characteristic function of E:

χE =

{
1 if x ∈ E

0 if x 6∈ E .

Theorem 2.6 Let E be a convex set. Then the measures |DχE| and
Hn−1 ∂E coincide.

3. Proof of the main result

The proof of Theorem 2.1 is based on the direct method of the calcu-
lus of variations: first we prove a strong compactness property for the
class of convex sets, then we restate the problem in terms of functionals
depending on vector measures, where Reshetnyak’s theorem applies.

Proof of Theorem 2.1. Using Theorem 2.6, the functional F can be
written in the form

F (E) =

∫

∂E

f(x, ν) dHn−1 =

∫

Q

f(x, ν) d|DχE| ,

where the vector measure DχE is the derivative of the characteristic
function of E in the sense of Schwartz distributions, and |DχE| is
the variation measure associated to DχE. By the Radon-Nikodym
theorem, we have the equality

ν = − dDχE

d|DχE| ,

so we can think of F as a functional defined on the following classes of
measures:

MK,Q =
{
µ ∈M : µ = DχE, E ∈ CK,Q

}

MV,Q =
{
µ ∈M : µ = DχE, E ∈ CV,Q

}
.
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Lemma 3.1 below provides the compactness of the classes MK,Q and
MV,Q, while Theorem 2.5 gives the continuity of F , so existence follows
by the direct method of the calculus of variations.

Lemma 3.1 The classes MK,Q and MV,Q are compact with respect to
the convergence in variation.

The proof requires some lemmas:

Lemma 3.2 (see 2.4 of [2]) Let A,B ⊂ Rn be two n-dimensional con-
vex sets such that A ⊂ B. Then Hn−1(∂A) ≤ Hn−1(∂B) and equality
holds iff A = B.

Proof. Let P : ∂B → ∂A be the projection on the convex A, which
maps each point of ∂B in the point of ∂A of least distance from A. It
is well known that P is Lipschitz with Lipschitz constant 1. By the
properties of Hausdorff measures, (see for instance Rogers [9], Theo-
rem 29), we get the inequality

Hn−1 (∂A) = Hn−1 (P (∂B)) ≤ Hn−1 (∂B) .

Finally, if Hn−1 (∂A) = Hn−1 (∂B) and by contradiction A 6= B, we
could find a hyperplane S tangent to A such that, denoting by S+ the
half space bounded by S and containing A, it is

B \ S+ 6= ∅ .

It is easy to see that B \ S contains an open set, so that

(3) Hn−1 (∂A) ≤ Hn−1
(
∂(B ∩ S+)

)
=

= Hn−1 (∂B)−Hn−1
(
∂B \ S+

)
+Hn−1 (S ∩B) < Hn−1 (∂B) ,

which contradicts the assumption Hn−1 (∂A) = Hn−1 (∂B).

Lemma 3.3 (see 4.4 of [2]) Let Eh, E ⊂ Rn be bounded convex sub-
sets of Rn with Eh → E in L1(Ω). Then Hn−1 (∂Eh) → Hn−1 (∂E).

Proof. The proof is trivial if E has dimension smaller than n, so it is
sufficient to consider the case dimHE = n. As Eh converges to E in
L1(Ω) it follows that

∀ε > 0 ∃hε : h > hε =⇒ Eh ⊂ E + B(0, ε) .

Therefore, by Lemma 3.2, we obtain for h > hε,

Hn−1 (∂Eh) ≤ Hn−1 (∂(E + B(0, ε))) ,

so that

lim sup
h→∞

Hn−1 (∂Eh) ≤ lim sup
ε→0+

Hn−1 (∂(E + B(0, ε))) = Hn−1 (∂E) ,
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But by the L1 lower semicontinuity of the perimeter,

lim inf
h→∞

Hn−1 (∂Eh) ≥ Hn−1 (∂E) ,

and the proof is complete.

Proof of Lemma 3.1. We set

CQ = {E convex : E ⊂ Q} ,

and the corresponding class of measures

MQ = {µ ∈M : µ = DχE, E ∈ CQ} ,

Let E be an element of CQ. We have, by Lemma 3.2,

|DχE|(Q) = Hn−1 (∂E) ≤ Hn−1 (∂Q) ,

and therefore the class CQ is a bounded subset of BV , while MQ is
bounded in M. For each sequence Eh of convex sets contained in Q,
by the Banach-Alaoglu theorem we can assume up to a subsequence
that DχEh

tends to DχE in the weak * topology. Moreover, by the
compactness theorem for BV functions, we can assume that χEh

→ χE

in L1 strongly. By Lemma 3.3

lim
h→∞

|DχEh
|(Ω) = lim

h→∞
Hn−1 (∂Eh) = Hn−1 (∂E) = |DχE|(Ω) ,

so the compactness with respect to the convergence in variation for the
class MQ follows. Since the classes MK,Q and MV,Q are clearly closed
with respect to the convergence in variation, the proof is achieved.

Remark 3.4. In Theorem 2.1 the assumption of convexity for the sets
in classes CK,Q and CV,Q cannot be easily weakened. Indeed, consider
for instance the sequence (Eh) given by:

Eh =

{
(x, y) ∈ R2 : x ∈ [0, 1], 0 ≤ y ≤ 1 +

sin hx

h

}
.

The sets Eh are equilipschitz domains, converge in L1 and uniformly
(in the sense of Lemma 4.2 below) to E = [0, 1]× [0, 1]. Nevertheless,
taking the Newton functional (2) we have that the lower semicontinuity
inequality does not hold, i.e. F (E) > limh→∞ F (Eh). In the Cartesian
case this is due to the lack of convexity of (1) with respect to the
gradient.
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4. Section Optimization

In the nonparametric case of Newton’s problem we seek the shape
with least resistance among those having prescribed cross section Ω.
We can also let Ω vary in a suitable class, so that also the optimal
section becomes an unknown.

More generally, we consider the class

SA,K,Q = {E convex closed subset of Rn: K ⊂ E ⊂ Q,Hn−1 (E ∩ π) ≥ A}
where π is a given hyperplane in Rn, while K and Q are two compact
subsets of Rn with positive measure, and A is a positive number (which
is assumed smaller than Hn−1(Q ∩ π) and bigger than Hn−1(K ∩ π)).

The following result holds:

Theorem 4.1 Let F be as in Theorem 2.1. Then the minimum prob-
lem

min
E∈SA,K,Q

F (E)

admits at least one solution.

The proof requires some lemmas:

Lemma 4.2 Let Eh, E ⊂ Rn be bounded convex subsets of Rn with
positive measure and such that Eh → E in L1. Then

∀ε > 0 ∃hε : h > hε =⇒ Eh4E ⊂ {x : dist(x, ∂E) ≤ ε} .

where A4B = (A \B) ∪ (B \ A).

Proof. Suppose χEh
(x) 6= χE(x) and let d = dist(x, ∂E) > 0.

Consider first the case x ∈
◦
E, x 6∈ Eh. By the convexity of E we can

find a closed halfspace S such that x ∈ ∂S and Eh ∩ S = ∅. Let Bd be
the open ball centered in x with radius d. Then we have that

‖χEh
− χE‖L1 ≥ |E \ Eh| ≥ |S ∩Bd| = 1

2
ωndn

where ωn = Hn(B1). This inequality implies with L1 convergence that
d → 0 as h →∞.

Now consider the case x ∈ Rn \ E, x ∈ Eh. For the previous case

we can assume that for each ε there exists h̃ such that if h > h̃ then
Kε = {x ∈ E : dist(x, ∂E) ≥ ε} ⊂ Eh. Denote by z the point of
∂E of minimal distance from x, by π the hyperplane orthogonal to the
segment x z and passing by an interior point y of Kε. Analogously, π′

will be the hyperplane parallel to π and passing by z. Let C be the
cone with vertex x and basis Kε ∩ π, and C ′ the cone with vertex x
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and basis C ∩ π′. Then we have:

|C ′| = 1

n

Hn−1 (Kε ∩ π)

dist(x, y)n−1
dn

and thus

‖χEh
− χE‖L1 ≥ |Eh \ E| ≥ |C ′|

which implies that d → 0 as h →∞. This concludes the proof.

Lemma 4.3 Let π be a hyperplane, and Eh, E ⊂ Rn be bounded
convex closed subsets of Rn with positive measure, such that Eh → E
in L1(Ω). Then lim suph→∞Hn−1 (Eh ∩ π) ≤ Hn−1 (E ∩ π).

Proof. It is sufficient to prove that

∀x ∈ Rn lim sup
h→∞

χEh∩π(x) ≤ χE∩π(x) .

Let xhk
∈ Ehk

∩ π such that xhk
→ x and suppose, by contradiction,

that x 6∈ E ∩ π. Then dist(x, ∂E) > 0, and by Lemma 4.2 we know
that χEhk

vanishes eventually in a neighborhood of x. But this clearly
contradicts the assumption that xhk

∈ Ehk
.

Proof of Theorem 4.1. From Lemma 3.1 we know that the class of mea-
sures

MK,Q =
{
µ ∈M : µ = DχE, E ∈ CK,Q

}

is compact with respect to the convergence in variation, so it is sufficient
to prove that if Eh → E in L1, then lim suph→∞Hn−1 (Eh ∩ π) ≤
Hn−1 (E ∩ π), which is given by Lemma 4.3.

Remark 4.4. In Theorem 2.1, if f does not depend on the variable x,
we have that the functional F is homogeneous of degree n − 1 with
respect to homotheties on the depending set. This implies that the
boundary of the minimizer E in the class CK,Q must touch either ∂K
or ∂Q. In the case of classes CV,Q and SA,K,Q the situation seems more
complicated, and we did not find any general classification result.

Remark 4.5. By repeating the arguments used in the proofs, one can
obtain the analogous results of Theorem 2.1 and 4.1 for the classes

C̃V,Q = {E convex subset of Rn: E ⊂ Q, |E| = V }
S̃A,K,Q =

{
E convex closed subset of Rn: K ⊂ E ⊂ Q,Hn−1 (E ∩ π) = A

}
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