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Abstract. In this paper we discuss the tractability of stochastic volatility models
for pricing and hedging options with the mean-variance hedging approach. We
characterize the variance-optimal measure as the solution of an equation between
Doleans exponentials: explicit examples include both models where volatility solves
a diffusion equation, and models where it follows a jump process.

We further discuss the closedness of the space of strategies.

Introduction

The mean-variance hedging approach to pricing and hedging contingent claims
was introduced (in the martingale case) by Föllmer/Sondermann (1986) : subsequent
extensions to the general semimartingale case were done by Duffie/Richardson (1991)
, Schweizer (1992, 1996) , Schäl (1994) , Gouriéroux et al. (1998) , Pham et al. (1997)
and Rheinländer/Schweizer (1997). The paper of Schweizer (1999) contains a general
overview of the subject, and a complete bibliography.

The aim of this paper is to analyse the mean-variance hedging criterion in stochas-
tic volatility models : we develop a general framework (introduced by Föllmer/Schwe-
izer (1991) ) where a stochastic volatility model is seen as a model with incomplete
information.

This model would be complete with respect to some larger filtration (usually in-
cluding all information on past and future volatility), but not under the filtration
available to the hedging agent (who usually observes only the asset price history).
This framework is general enough to include both the diffusion models (such as Hull-
White, Heston, Stein and Stein, only to mention a few), and less common models
where volatility jumps.

We begin our analysis with a characterization of the set of equivalent martingale
measures in terms of Doléans exponentials: this provides a one-one correspondence
between equivalent martingale measures and a class of predictable processes. Ex-
ploiting results of Schweizer (1996) and Delbaen/Schachermayer (1996) , we then
identify the variance-optimal martingale measure as the solution of an equation in-
volving exponential martingales.

Our results are illustrated by several examples: the detailed analysis of all these
examples can be found in Biagini/Guasoni (1999).

In the case of diffusion stochastic volatility models we recover some results of
Laurent/Pham (1999) with a different method: in fact, while they use dynamic
programming techniques, we essentially focus on stochastic integration. Also the
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recent paper by Heath et al. (1999) contains a detailed analysis of the mean-variance
hedging criterion (compared to the locally risk-minimizing criterion) in stochastic
volatility models.

In order to keep notations simple, we only consider one-dimensional models; how-
ever our results can easily be extended to the multidimensional case.

1. Statement of the problem

For all definitions on stochastic integration and martingale representation, we
refer to Protter (1990) and Dellacherie/Meyer (1982) (in particular, all filtrations
are supposed to satisfy the so-called usual hypothesis ).

We have two complete filtered probability spaces denoted by (Ω,FW ,FW
t , PW )

and (E, E , Et, P
E). We assume that Wt is a standard Brownian Motion on Ω =

C([0, T ],R), PW is the standard Wiener measure, FW = FW
T , and FW

t is the PW -
augmentation of the filtration generated by W .

We have two assets: the risky asset St, and the riskless asset Bt = exp
(∫ t

0
rsds

)
,

where rt is a deterministic function. The risky asset is represented by a process
St(w, η) on the product space Ω × E, whose dynamics is given by the following
equation:

{
dS(t, ω, η) = S(t, ω, η)

(
µ(t, ω, η)dt + σ(t, ω, η)dWt(ω)

)

S(0) = S0

We shall make the following assumptions:

i) on the space E we have a (possibly d-dimensional) martingale M which has the
predicable representation property with respect to the filtration (Et)t∈[0,T ].

ii) the information available at time t is given by the filtration FW
t ⊗ Et.

iii) the probability P on Ω⊗ E is the product probability PW ⊗ PE.

Remark 1.1. In many applications, the most natural filtration available to the agent
is the one generated by S: let us see how ii) translates in this case. If σ has a right-
continuous version, it is FS

t -adapted: in fact we recall that (see Föllmer/Schweizer
(1991) page 410)

〈S〉t =

∫ t

0

σ2
sS

2
sds = lim

supi |ti+1−ti|→0

∑
(Sti+1

− Sti)
2

is FS
t -adapted. If µ(t, ω, η) is also FS

t -adapted, it is easy to see that the filtration gen-
erated by S coincides with the one generated by (W,µ, σ). Therefore the assumption
ii) boils down to

FW,µ,σ
t = FW

t ⊗ Et

Remark 1.2. Since the technicalities involved in the definition above may hide the
idea of incomplete information, we provide a simple explanation. This market would

be complete if the agent had access to the (larger) filtration F̃t = Ft ⊗ E , which
contains at any time all the information on past and future drift and volatility. As
pointed out by Föllmer/Schweizer (1991) , this is a consequence of the fact that all
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F̃t-martingales can be written in the form

Nt(ω, η) = N0(η) +

∫ t

0

Hs(ω, η)dWs(ω)

for some F̃ -predictable process H. This result is an exercise on stochastic integration:
we provide a proof in the appendix (Proposition 5.1), for the sake of completeness.

The discounted value of the risky asset follows the equation:{
dXt = Xt

(
(µt − rt)dt + σtdWt

)

X0 = S0

We assume µ and σ are such that Xt ∈ L2(P ) for all t ∈ [0, T ], and denote by

λt(ω, η) =
µ(t, ω, η)− r(t)

σ(t, ω, η)
the so-called market price of risk.

Example 1.3. This example was introduced by Harrison/Pliska (1981) , and inves-
tigated later by Föllmer/Schweizer ( (1991) , page 142).

µt and σt are constant until a fixed time t0, then they jump simultaneously, the
pair (µ, σ) having two possible outcomes. In other words{

µt(η) = 1{t<t0}µ + 1{t≥t0}µη

σt(η) = 1{t<t0}σ + 1{t≥t0}ση

where E = {0, 1}, Et = {∅, E} for t < t0 and Et = P(E) for t ≥ t0. A fundamental
martingale is given by Mt = 1{t≥t0}(1{η=1} − p), where p = P (η = 1).

This example was generalized by Föllmer/Leukert (1999) , where the values of µt

and σt after the jump time t0 have a continuous distribution: in this case E = R and
the martingale M has to be replaced by a random measure ( see Biagini/Guasoni
(1999) for details).

Example 1.4. The previous example can be extended in several ways: we consider
in particular a model proposed in discrete time fashion in RiskMetrics Monitor (see
Zangari (1996) ) as an improvement of the standard lognormal model for calculating
Value at Risk. More precisely, we have multiple independet jumps at fixed equispaced
time intervals. We can set E = {0, 1}n and, denoting η = {a1, . . . , an}, Et is equal
to the parts of {ai}ti≤t ( where ti = i T

n+1
). One obtains the following dynamics:

{
µt(η) = 1{t<t1}µ +

∑
i 1{ti≤t<ti+1}µai

+ 1{t≥tn}µan

σt(η) = 1{t<t1}σ +
∑

i 1{ti≤t<ti+1}σai
+ 1{t≥tn}σan

Since in this model η is binomially distributed ( in fact the numbers ai are inde-
pendent and P (ai = 1) = p ) , it is evident the existence of a martingale with the
representation property.

Example 1.5. This example was studied in detail by Biagini/Guasoni (1999). We
have

µt(η) = 1{t<τ}µ1 + 1{t≥τ}µ2

σt(η) = 1{t<τ}σ1 + 1{t≥τ}σ2
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where τ is a stopping time whose law restricted to [0, T ) has a density f ( and

P (τ = T ) = 1− ∫ T

0
f(s)ds ).

In this case, E = [0, T ], Et = B([0, t]) ∪ (t, T ], and a fundamental martingale can
be found in the form Mt = 1{t≥τ} − a(t ∧ τ) , where a(.) is an increasing function
which can be explicitely determined in terms of f .

Example 1.6. The previous example can be generalized in the following way: after
the jump time τ , µ and σ have a general probability distribution independent from
τ . The space E is, in this case, [0, T ] × R and the martingale M is replaced by
the random measure

(
ν − νp

)
, where νp is the compensator of the random measure

ν(η, dt, dx) = ε(τ(η),α(η))(dt, dx) and α(η) = λ2(η)− λ2
1 .

Example 1.7. A number of diffusion stochastic volatility models have been pro-
posed in the literature, most of them being particular cases of the following

{
dXt = σ(t,Xt, vt)Xt

(
λ(t, Xt, vt)dt + dW 1

t

)

dvt = α(t,Xt, vt)dt + β(t,Xt, vt)dW 1
t + γ(t,Xt, vt)dW 2

t

where W 1 and W 2 are two independent Brownian Motions.
We set E = C([0, 1],R), and Et is the augmentation of the filtration generated by

W 2
t : the natural choice for a martingale with the representation property on E is

clearly W 2.

In the general framework described above, an agent wishes to hedge a certain
European option H expiring at a fixed time T : his goal is to minimize the risk,
defined as the variance of the tracking error at expiration. Therefore we look for a
solution to the minimum problem

min
c∈R
θ∈Θ

E
[
(H − c−GT (θ))2](1)

where

Gt(θ) =

∫ t

0

θsdXs and Θ =
{
θ ∈ L(X), Gt(θ) ∈ S2(P )

}

Here L(X) denotes the space of X-integrable Ft-predictable processes, and S2 the
space of semimartingales Y decomposable as Y = Y0 +M +A, where M is a square-
integrable martingale, and A is a process of square-integrable variation.

Definition 1.8. We define the following spaces of signed martingale measures

Ms = {Q ¿ P : Xt is a Q-local martingale}
Me = {Q ∈Ms, Q ∼ P}

M2
s =

{
Q ∈Ms,

dQ

dP
∈ L2(P )

}

M2
e = Me ∩M2

s

If Q is a signed probability with density Z with respect to P , by definition Xt is
a Q-martingale if XtZt is a P -martingale, where Zt = E [Z| F ].
The existence of a minimizer for (1) was shown for any H ∈ L2(P ) independently by
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Gouriéroux et al (1998) and Rheinländer/Schweizer (1997) under the two standing
assumptions (which need to be checked for each particular model):

i) M2
e 6= ∅;

ii) GT (Θ) is closed.

While i) is equivalent to a no-arbitrage condition (see Delbaen/Schachermayer (1996))
and holds for very general models, ii) often fails even for models commonly used in
practice. However we shall return to this issue later.
If (1) has a solution, the optimal value for c can be written as

c = Ẽ [H]

where Ẽ denotes the expectation under a new signed measure P̃ , the so-called

variance-optimal martingale measure. By definition, P̃ is the element of minimal
norm in M2

s (which evidently exists as soon as M2
s 6= ∅): see for instance Schweizer

(1996) for further details.

Our first step towards an explicit formula for
dP̃

dP
is the characterization of the set

M2
e of the square-integrable equivalent martingale measures. We start by recalling

the following:

Definition 1.9. The Doléans exponential E (Z) of a semimartingale Z is defined as

E (Z)t = exp

(
Zt − 1

2
〈Zc〉t

) ∏
s≤t

(1 + ∆Zs) exp (−∆Zs)

where Zc denotes the continous part of Z, while ∆Zs = Zs − Zs− .

We prove now the following lemma.

Lemma 1.10. Let Zt be a local martingale with Z0 = 1. The following conditions
are equivalent:

i) ZtXt is a local martingale

ii) Zt = E (− ∫ ·
0
λsdXs

)
t
(1 +

∫ t

0
ksdMs) for some predictable process ks such that

the stochastic integral
∫ t

0
ksdMs is a local martingale.

Proof. We recall that the pair (W,M) has the predictable representation property
(see Proposition 5.2). Therefore

Zt = 1 +

∫ t

0

hsdWs +

∫ t

0

ksdMs

By Itô’s formula, we have

d(ZtXt) =
[
Zt−(µt − rt) + htσt

]
Xtdt +

[
Zt−σtXt + htXt

]
dWt + ktXtdMt

The process (ZtXt) is a local martingale if and only if ht = −µt − rt

σt

Zt−. More

precisely, if λt =
µt − rt

σt

, Zt satisfies the following stochastic differential equation:

dZt = −λtZt−dWt + ktdMt
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which has a unique solution (see Protter (1990) for details). It can easily be verified

that Zt = E (− ∫ ·
0
λsdXs

)
t
(1 +

∫ t

0
ksdMs) is the solution of the above equation.

If ZT is strictly positive, then Nt = 1 +
∫ t

0
ksdMs can be written as the Doléans

exponential Nt = E
(
−

∫ ·

0

ks

Ns−
dMs

)

t

.

An immediate consequence of the above lemma is the characterization of M2
s and

M2
e.

Proposition 1.11. 1. For every Q ∈M2
s

dQ

dP
= E

(
−

∫ ·

0

λt(ω, η)dWt

)

T

(
c +

∫ T

0

ktdMt

)

where kt is a process such that the above expression is square integrable.
2. For every Q ∈M2

e

dQ

dP
= E

(
−

∫ ·

0

λt(ω, η)dWt

)

T

E
(∫ ·

0

kt(ω, η)dMt

)

T

with kt such that kt · ∆Mt > −1 and E (− ∫ ·
0
λsdWs + ksdMs

)
t

is a square-
integrable martingale.

Recall that E (− ∫ ·
0
λsdWs + ksdMs

)
t
= E (− ∫ ·

0
λsdWs

)
t
E (∫ ·

0
ksdMs

)
t
since [W,M ] =

0 (see Protter (1990) pag. 79). Condition kt ·∆Mt > −1 guarantees the positivity
of E (∫ ·

0
ktdMt

)
T

.

Remark 1.12. A similar characterization holds for the probabilities Q ¿ P such that
Xt is a Q-martingale with respect to the enlarged filtration F̃t : more precisely

dQ

dP
= G(η)E

(
−

∫ ·

0

λs(η)dWs

)

T

with G such that the above expression is square integrable and E [G] = 1. Q is a
true probability if G > 0.

Before we find an equation to identify P̃ , we need another

Definition 1.13. We define the two processes Ŵt and W ∗
t as follows:

Ŵt = Wt +

∫ t

0

λsds

W ∗
t = Wt + 2

∫ t

0

λsds

Remark 1.14. By the theorem of Girsanov, if E (− ∫ ·
0
λsdWs

)
t
and E (−2

∫ ·
0
λsdWs

)
t

are uniformly integrable martingales, then Ŵt and W ∗
t are Brownian Motions respec-

tively under the measures P̂ and P ∗, defined as

dP̂

dP
= E

(
−

∫ ·

0

λtdWt

)

T

and
dP ∗

dP
= E

(
−2

∫ ·

0

λtdWt

)

T
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We recall that P̂ (if it exists) is called the minimal martingale measure.

Lemma 1.15. Let h, k be two predictable stochastic processes whose stochastic inte-
grals

∫ t

0
hsdW ∗

s and
∫ t

0
ksdMs are defined. The following conditions are equivalent:

exp

(∫ T

0

λ2
sds

)
= c

E (∫ ·
0
hsdW ∗

s

)
T

E (∫ ·
0
ksdMs

)
T

(2)

E
(
−

∫ ·

0

λsdWs +

∫ ·

0

ksdMs

)

T

= c E
(∫ ·

0

(−λs + hs)dŴs

)

T

(3)

where c is the same constant in both equations.

Proof. We will use the properties of the Doléans exponential listed in Protter (1990)
pag. 79. Starting from the left-hand side of (3), we have

E
(
−

∫ ·

0

λsdWs +

∫ ·

0

ksdMs

)

T

=

= E
(
−

∫ ·

0

λsdŴs

)

T

E
(∫ ·

0

ksdMs

)

T

exp

(∫ T

0

λ2
sds

)

Conversely, starting from the right-hand side of (3), we have

E
(∫ ·

0

(−λs + hs)dŴs

)

T

=

= E
(
−

∫ ·

0

λsdŴs

)

T

E
(∫ ·

0

hsdŴs

)

T

exp

(∫ T

0

λshsds

)
=

= E
(
−

∫ ·

0

λsdŴs

)

T

E
(∫ ·

0

hsdW ∗
s

)

T

The conclusion is now immediate.

From now on, we suppose thatM2
e 6= ∅. By Schweizer (1996), Lemma 1 page 210, and

Delbaen/Schachermayer (1996) lemma 2.2 and Theorem 1.3, we obtain the following

characterization of the variance-optimal martingale measure: P̃ is an element of M2
e

(i.e. P̃ is a true probability) and it is the unique element of M2
s which can be written

in the form

dP̃

dP
= c +

∫ T

0

γsdXs

with c ≥ 1. In the above equation, γt is a predictable stochastic process which
does not necessarily belong to Θ ; however the integral process

∫ t

0
γsdXs is a square

integrable martingale for every probability measure Q ∈M2
e. In particular,

∫ T

0
γsdXs

is an element of GT (Θ).

Since
dP̃

dP
is strictly positive, it can be written as a Doléans exponential. From the

previous result, we obtain the following :
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Theorem 1.16. Let h, k be two predictable processes such that the exponential mar-
tingale E (− ∫ ·

0
λsdWs +

∫ ·
0
ksdMs

)
is square-integrable. Then h, k are solutions of

the equation (2) of Lemma 1.15 if and only if

dP̃

dP
= E

(
−

∫ ·

0

λsdWs +

∫ ·

0

ksdMs

)

T

=
E (− ∫ ·

0
βsdXs

)
T

E
[E (− ∫ ·

0
βsdXs

)
T

]

where βs =
λs − hs

σsXs

.

The equality
dP̃

dP
= c E

(
−

∫ ·

0

βsdXs

)

T

is useful to characterize the optimal strat-

egy (see Rheinländer/Schweizer (1997) ); we also recall that β is the so-called hedging
numéraire of Gouriéroux et al. (1998).

2. Explicit Solutions

We have seen that a solution to the equation:

exp

(∫ T

0

λ2
sds

)
= c

E (∫ ·
0
hsdW ∗

s

)
T

E (∫ ·
0
ksdMs

)
T

provides an explicit form for the density of the variance-optimal martingale measure.

Definition 2.1. We recall the definition of the mean-variance tradeoff process K̂t

(see, for instance, Schweizer (1996)):

K̂t =

∫ t

0

λ2
sds

From (2) we can immediately see the following:

Proposition 2.2. K̂T is a constant if and only if P̃ = P̂ , and β =
λ

σX
.

This was first pointed out by Pham et al. (1998) and, for Itô processes, by Lau-
rent/Pham (1999).

In more realistic situations, a solution to (2) can easily be found in two cases:

(α) λs(ω, η) = λs(ω): in this case we set k = 0, and solve the equation

E
(∫ ·

0

htdW ∗
t

)

T

=
exp

(∫ T

0
λ2

t dt
)

E∗
[
exp

(∫ T

0
λ2

t dt
)]

which, provided that E∗ exists, and the above expectation is finite, admits a
solution by the representation property of W (and thus of W ∗) on Ω. This case

covers the so-called almost complete models, where P̃ = P̂ , while βs =
λs − hs

σs

.

In a typical example, H is an option on two observable assets, but trading is
allowed in only one of them. As a result, FS

t is strictly smaller than FW
t ⊗ Et,

unlike in the usual stochastic volatility models, where these filtrations are equal.
For a discussion on almost complete models, see for instance Pham et al.

(1998) or Laurent/Pham (1999).
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We only remark that in this caseM2
e 6= ∅ if and only if P̂ exists and

dP̂

dP
is in L2.

Since (
dP̂

dP
)2 = E

(
−2

∫ ·

0

λsdXs

)

T

exp

(∫ T

0

λ2
t dt

)
, this condition is satisfied if

the probability P ∗ exists and exp
(∫ T

0
λ2

t dt
)

is P ∗-integrable.

(β) λs(ω, η) = λs(η) : in this case we can simply set h = 0, and then solve the
equation

E
(∫ ·

0

ktdMt

)

T

=
exp

(
− ∫ T

0
λ2

t (η)dt
)

E
[
exp

(
− ∫ T

0
λ2

t (η)dt
)]

which always admits a solution, since M has the representation property on E.

This case covers all examples considered in Biagini/Guasoni (1999) : βs =
λs

σsXs

,

and P̃ is generally different than P̂ , unless K̂T is deterministic (for diffusion
processes, this is proved Pham et al. (1998) , Theorem 11).

We remark that if
∫ T

0
λ2

t (η)dt is finite almost surely, then M2
e 6= ∅. Namely, in

this case we obtain

(
dP̃

dP
)2 = E

(
−2

∫ ·

0

λ2
t (η)dWt

)

T

exp
(
− ∫ T

0
λ2

t (η)dt
)

E
[
exp

(
− ∫ T

0
λ2

t (η)dt
)]2

The process E (−2
∫ ·

0
λ2

t dWt

)
T

is actually a stochastic integral depending on the
parameter η (see Protter (1990) for details): therefore for every fixed η we have that∫
Ω
E (−2

∫ ·
0
λ2

t (η)dWt

)
T

dP (ω) = 1, and consequently we get

E

[
(
dP̃

dP
)2

]
=

1

E
[
exp

(
− ∫ T

0
λ2

t (η)dt
)]

When λs(ω, η) = λs(η), it may be hard to find k explicitly ; but in fact it is often

sufficient to know that it exists, since P̃ can be obtained through the equality

dP̃

dP
= E

(
−

∫ ·

0

λsdWs

)

T

exp
(
− ∫ T

0
λ2

t dt
)

E
[
exp

(
− ∫ T

0
λ2

t dt
)](4)

Below we have some examples:

Example 2.3. If we consider the example 1.4 , under the probability P̃ the numbers
ai are still independent , but ai = 1 with a new probability p̃ , where , if ∆T = T

n+1
,

p̃ =
p e−λ2

1(∆T )

p e−λ2
1(∆T ) + (1− p) e−λ2

2(∆T )



10 FRANCESCA BIAGINI, PAOLO GUASONI, AND MAURIZIO PRATELLI

Example 2.4. If we consider the example 1.6, under the new probability P̃ the
time jump τ and the new values of µ and σ after τ are no more independent: in

Biagini/Guasoni (1999) one can find the explicit form of the law of τ under P̃ and
of the laws of µ and σ conditional to {τ = t}.

In some models, however, it may be desirable to find kt: this is the case, for
instance, for stochastic volatility models defined by diffusion processes. In example
1.7, if β(t, x, y) = 0 and if α, γ, σ don’t depend on Xt , we have λs(ω, η) = λs(η), and

P̃ can be written as in (4): however, this does not clarify the dynamics of vt under

P̃ . On the other hand, if kt is known, then one can apply Girsanov’s Theorem, and
get

{
dXt = Xtσ(t, vt)dW̃ 1

t

dvt = (α(t, vt)− kt)dt + γ(t, vt)dW̃ 2
t

where W̃ 1
t and W̃ 2

t are independent Wiener processes under P̃ .
If the model is in some sense “Markovian”, we obtain the following result (which

coincides with Proposition 6.1 (3) of Laurent/Pham (1999) , but it is proved in a
completely different way) :

Proposition 2.5. Assume that E
[
exp

(
− ∫ T

t
λ2

s(s, vs)ds
)∣∣∣Ft

]
= G(t, vt), and that

the function G(t, x) is C1 in t and C2 in x. Then we have

E
(∫ ·

0

ksdW 2
s

)
=

exp
(
− ∫ T

0
λ2(s, vs)ds

)

E
[
exp

(
− ∫ T

0
λ2(s, vs)ds

)] iff kt =
∂G
∂x

γ

G

∣∣∣∣∣
(t,vt)

Proof. By martingale representation, there exists a process gt such that

exp

(
−

∫ T

0

λ2(s, vs)ds

)
= G0 +

∫ T

0

gsdW 2
s

Therefore:

Gt = E [GT | Ft] = G0 +

∫ t

0

gsdW 2
s =

= exp

(
−

∫ t

0

λ2(s, vs)ds

)
E

[
exp

(
−

∫ T

t

λ2(s, vs)ds

)∣∣∣∣Ft

]
=

= exp

(
−

∫ t

0

λ2(s, vs)ds

)
G(t, vt)

Applying Itô’s formula, we obtain:

dGt = gtdW 2
t = exp

(
−

∫ t

0

λ2(s, vs)ds

)(
∂G

∂x
γ

)
(t, vt)dW 2

t

where, in the last equality, the sum of the terms of finite variation vanishes since

Gt is a martingale. Therefore, gt = exp
(
− ∫ t

0
λ2(s, vs)ds

) (
∂G
∂x

γ
)
(t, vt). However, we



MEAN-VARIANCE HEDGING FOR STOCHASTIC VOLATILITY MODELS 11

also have

GT = G0 +

∫ T

0

gsdW 2
s = G0E

(∫ ·

0

gs

Gs

dW 2
s

)

T

= G0E
(∫ ·

0

ksdW 2
s

)

T

therefore kt =
gt

Gt

, and the proof is complete.

3. Conditions for the closedness of GT (Θ)

The closedness of the space GT (Θ) in L2(P ) plays a key role in mean-variance
hedging, since it guarantees the existence of an optimal hedging strategy in the
space Θ.

A sufficient condition for GT (Θ) to be closed is the boundedness of K̂T , as shown
by Pham et al. (1998). In some sense, we now show that in cases (α) and (β),

the boundedness of K̂T is almost necessary. We will show that this condition is not
satisfied for some commonly used models.

First we recall, and state as a theorem, a short version of a necessary and sufficient
condition established by Delbaen et al. (1997) :

Theorem 3.1. Let X be a continuous semimartingale: suppose that M2
e 6= ∅ and

let Zt = E
[

d eP
dP

∣∣∣Ft

]
. The following conditions are equivalent:

i) GT (Θ) is closed in L2(P );
ii) Zt satisfies the following reverse Hölder inequality:

E

[(
ZT

Zτ

)2
∣∣∣∣∣Fτ

]
≤ C

for all stopping times τ ≤ T and for some constant C.

We shall now see how this condition translates for (α) and (β).

Proposition 3.2. Assume that M2
e 6= ∅ :

i) If λs(ω, η) = λs(ω), then GT (Θ) is closed if and only if there exists some M
such that, for all stopping times τ ,

E∗
[
exp

(∫ T

τ

λ2
t (ω)dt

)∣∣∣∣Fτ

]
< M

ii) If λs(ω, η) = λs(η), then GT (Θ) is closed if and only if there exists some ε > 0
such that, for all stopping times τ ,

E

[
exp

(
−

∫ T

τ

λ2
t (η)dt

)∣∣∣∣Fτ

]
> ε

Proof. From 3.1, it follows that GT (Θ) is closed if and only if condition ii) in Theorem
3.1 is satisfied.

For ii), we have

Zτ = E [ZT | Fτ ] = E
(
−

∫ ·

0

λtdWt

)

τ

E
[
exp

(
− ∫ T

0
λ2

t (η)dt
)∣∣∣Fτ

]

E
[
exp

(
− ∫ T

0
λ2

t (η)dt
)] =
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It follows that

ZT

Zτ

=
E (− ∫ ·

0
λtdWt

)
T

E (− ∫ ·
0
λtdWt

)
τ

exp
(
− ∫ T

0
λ2

t (η)dt
)

E
[
exp

(
− ∫ T

0
λ2

t (η)dt
)∣∣∣Fτ

] =

= E
(
−

∫ ·

τ

λtdWt

)

T

exp
(
− ∫ T

τ
λ2

t (η)dt
)

E
[
exp

(
− ∫ T

τ
λ2

t (η)dt
)∣∣∣Fτ

]

Therefore:

E

[(
ZT

Zτ

)2
∣∣∣∣∣Fτ

]
=

E
[
E (−2

∫ ·
τ
λtdWt

)
T

exp
(
− ∫ T

τ
λ2

t (η)dt
)∣∣∣Fτ

]

E
[
exp

(
− ∫ T

τ
λ2

t (η)dt
)∣∣∣Fτ

]2 =

=
E∗

[
exp

(
− ∫ T

τ
λ2

t (η)dt
)∣∣∣Fτ

]

E
[
exp

(
− ∫ T

τ
λ2

t (η)dt
)∣∣∣Fτ

]2

However, since λ depends only on η, we find that the projection of P ∗ on FE coin-

cides with P , and thus E∗
[
exp

(
− ∫ T

τ
λ2

t (η)dt
)∣∣∣Fτ

]
= E

[
exp

(
− ∫ T

τ
λ2

t (η)dt
)∣∣∣Fτ

]
.

Hence

E

[(
ZT

Zτ

)2
∣∣∣∣∣Fτ

]
=

1

E
[
exp

(
− ∫ T

τ
λ2

t (η)dt
)∣∣∣Fτ

]

as claimed. For i), calculations are more straightforward:

Zτ = E
(
−

∫ ·

0

λtdWt

)

τ

and thus

ZT

Zτ

=
E (− ∫ ·

0
λtdWt

)
T

E (− ∫ ·
0
λtdWt

)
τ

= E
(
−

∫ ·

τ

λtdWt

)

T

Finally

E

[(
ZT

Zτ

)2
∣∣∣∣∣Fτ

]
= E

[
E

(
−2

∫ ·

τ

λtdWt

)

T

exp

(∫ T

τ

λ2
t (ω)dt

)∣∣∣∣Fτ

]
=

= E∗
[
exp

(∫ T

τ

λ2
t (ω)dt

)∣∣∣∣Fτ

]

and the proof is complete.

We shall give some models where GT (Θ) is not closed.

Example 3.3. Consider example 1.3 (or better the generalization of Föllmer and
Leukert) , where:

λt = λ 1{t<t0} + λ(η)1{t≥t0}
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As mentioned before, here E = R : GT (Θ) is closed if and only if the distribution of
λ(η) has compact support.

In fact, if last condition is satisfied, then K̂T is bounded ; conversely, for t ≥ t0 we
have

E

[
exp

(
−

∫ T

t

λ2
s(η)ds

)∣∣∣∣Ft

]
= exp

(−(T − t)λ2(η)
)

By Proposition 3.2 , the conclusion is immediate.

Example 3.4. We now examine the Heston model, that is a stochastic volatility
model described by the equations

{
dXt = Xt

(
λ0vtdt +

√
vtdW 1

t

)

dvt =
(
α− βvt

)
dt +

√
vtdW 2

t

Here we have (see, for instance, Laurent/Pham (1999)) :

E

[
exp

(
−

∫ T

t

λ2
t (η)dt

)∣∣∣∣Ft

]
= exp

(−A(T − t)λ2
0vt −B(T − t)

)
(5)

where

A(τ) =
1 + ζ

δ

1− e−δτ

1 + ζe−δτ
δ = β

√
1 +

2λ2
0

β2
ζ =

δ − β

δ + β

Since δ, ζ > 0, it follows that A(T − t) > 0, and therefore (5) is bounded from below
if and only if vt is bounded from above. However, this is never the case, since in
Heston model vt is the square of a Bessel process with an appropriate change of time.

Analogous calculations can be carried out in the Stein and Stein model ( see Heath
et al. (1999), example 3.2.2 for details ) showing that also in this case GT (Θ) is not
closed.

We point out that the drawback of the non-closedness of the space GT (Θ) has
been overcome by Schweizer (1999) : by exploiting the approach introduced by
Gouriéroux et al. (1998) , Schweizer has proved the existence of an optimal mean-

variance strategy not in the space Θ , but in the space Θ̃ of all predictable processes θ
such that the stochastic integral

∫ t

0
θsdXs is a square integrable martingale for every

Q ∈M2
e .

4. Conclusions

We have seen that a simple equation involving stochastic exponentials can identify

the variance optimal probability P̃ (and the mean-variance hedging strategy) in a
general class of stochastic volatility models. All examples introduced are analysed
in Biagini/Guasoni (1999).

We further point out that the change of numéraire approach introduced by Geman
et al. (1995) can be adapted to give the explicit form of the mean-variance hedging
strategy for a call option (see Biagini/Guasoni (1999) ).
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5. Appendix

Proposition 5.1. Any square-integrable martingale with respect to the filtration F̃t

can be written as

Nt(ω, η) = N0(η) +

∫ t

0

Hs(ω, η)dWs(ω)

where H is F̃t-predictable and such that E
[∫ T

0
H2

s ds
]

< ∞.

Proof. Denote by M the set of martingales which admit a representation in the
desired form. We begin by showing that M contains all martingales Nt such that
NT (ω, η) = F (ω)G(η), with F, G square-integrable and measurable functions. In

fact, if F (ω) = F0 +
∫ T

0
Hs(ω)dWs(ω), with E [F 2] = F 2

0 + E
[∫ T

0
H2

s ds
]
, it is easily

seen that:

F (ω)G(η) = F0G(η) +

∫ T

0

Hs(ω)G(η)dWs(ω)

The stochastic process H̃s(ω, η) = Hs(ω)G(η) is F̃t-predictable, and

E
[
F 2G2

]
= E

[
F 2

0 G2
]
+ E

[∫ T

0

H2
s G2ds

]

M is obvoiusly stable under linear combinations, hence the set {NT : N ∈ M}
is dense in L2(Ω × E,FT ⊗ E , P ). However, if Nt = N0 +

∫ t

0
HsdWs, the map

N 7→ E [N2
T ] = E

[
N2

0 +
∫ T

0
H2

s ds
]

is an isometric injection from M into L2(Ω ×
E,FT ⊗ E , P ). This concludes the proof.

Proposition 5.2. Any square-integrable martingale Nt with respect to the filtration
FW

t ⊗ Et = Ft can be written in the form

Nt(ω, η) = N0 +

∫ t

0

Hs(ω, η)dWs(ω) +

∫ t

0

Ks(ω, η)dMs(η)

with H, K predictable and such that:

E

[∫ T

0

H2
s ds +

∫ T

0

K2
s d[M ]s

]
< ∞

Proof. Denote by M the set of martingales which admit a representation in the
desired form. We start showing that M contains all martingales Nt such that

NT (ω, η) = F (ω)G(η). We write F (ω) = F0 +
∫ T

0
Hs(ω)dWs(ω), G(η) = G0 +∫ T

0
Ks(η)dMs(η), and consider the martingales Rt = E [F | Ft] and Vt = E [G| Ft].

By Itô’s formula, and recalling that [W,M ] = 0, we have

F (ω)G(η) = F0G0 +

∫ T

0

VsHsdWs +

∫ T

0

RsKsdMs

Again, M is stable under linear combinations, and {NT : N ∈ M} is dense in L2.

Since the map N 7→ E
[
N2

0 +
∫ T

0
H2

s ds +
∫ T

0
K2

s d[M ]s

]
is an isometric injection from

M in L2, the proof is complete.
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